package sync import ( "context" "encoding/hex" "fmt" "sort" "sync" "time" "github.com/libp2p/go-libp2p/core" "github.com/pkg/errors" "github.com/prysmaticlabs/prysm/v4/async" "github.com/prysmaticlabs/prysm/v4/beacon-chain/blockchain" p2ptypes "github.com/prysmaticlabs/prysm/v4/beacon-chain/p2p/types" "github.com/prysmaticlabs/prysm/v4/config/params" "github.com/prysmaticlabs/prysm/v4/consensus-types/blocks" "github.com/prysmaticlabs/prysm/v4/consensus-types/interfaces" "github.com/prysmaticlabs/prysm/v4/consensus-types/primitives" "github.com/prysmaticlabs/prysm/v4/crypto/rand" "github.com/prysmaticlabs/prysm/v4/encoding/bytesutil" "github.com/prysmaticlabs/prysm/v4/encoding/ssz/equality" "github.com/prysmaticlabs/prysm/v4/monitoring/tracing" "github.com/prysmaticlabs/prysm/v4/time/slots" "github.com/sirupsen/logrus" "github.com/trailofbits/go-mutexasserts" "go.opencensus.io/trace" ) var processPendingBlocksPeriod = slots.DivideSlotBy(3 /* times per slot */) const maxPeerRequest = 50 const numOfTries = 5 const maxBlocksPerSlot = 3 // processes pending blocks queue on every processPendingBlocksPeriod func (s *Service) processPendingBlocksQueue() { // Prevents multiple queue processing goroutines (invoked by RunEvery) from contending for data. locker := new(sync.Mutex) async.RunEvery(s.ctx, processPendingBlocksPeriod, func() { // Don't process the pending blocks if genesis time has not been set. The chain is not ready. if !s.chainIsStarted() { return } locker.Lock() if err := s.processPendingBlocks(s.ctx); err != nil { log.WithError(err).Debug("Could not process pending blocks") } locker.Unlock() }) } // processPendingBlocks validates, processes, and broadcasts pending blocks. func (s *Service) processPendingBlocks(ctx context.Context) error { ctx, span := trace.StartSpan(ctx, "processPendingBlocks") defer span.End() // Validate pending slots before processing. if err := s.validatePendingSlots(); err != nil { return errors.Wrap(err, "could not validate pending slots") } // Sort slots for ordered processing. sortedSlots := s.sortedPendingSlots() span.AddAttributes(trace.Int64Attribute("numSlots", int64(len(sortedSlots))), trace.Int64Attribute("numPeers", int64(len(s.cfg.p2p.Peers().Connected())))) randGen := rand.NewGenerator() var parentRoots [][32]byte // Iterate through sorted slots. for _, slot := range sortedSlots { // Skip processing if slot is in the future. if slot > s.cfg.clock.CurrentSlot() { continue } ctx, span := startInnerSpan(ctx, slot) // Get blocks in the pending queue for the current slot. blocksInCache := s.getBlocksInQueue(slot) if len(blocksInCache) == 0 { span.End() continue } // Process each block in the queue. for _, b := range blocksInCache { if err := blocks.BeaconBlockIsNil(b); err != nil { continue } blkRoot, err := b.Block().HashTreeRoot() if err != nil { return err } // Skip blocks that are already being processed. if s.cfg.chain.BlockBeingSynced(blkRoot) { log.WithField("BlockRoot", fmt.Sprintf("%#x", blkRoot)).Info("Skipping pending block already being processed") continue } // Remove and skip blocks already in the database. if s.cfg.beaconDB.HasBlock(ctx, blkRoot) { if err := s.removeBlockFromQueue(b, blkRoot); err != nil { return err } continue } parentRoot := b.Block().ParentRoot() inPendingQueue := s.isBlockInQueue(parentRoot) // Check if block is bad. keepProcessing, err := s.checkIfBlockIsBad(ctx, span, slot, b, blkRoot) if err != nil { return err } if !keepProcessing { continue } // Request parent block if not in the pending queue and not in the database. isParentBlockInDB := s.cfg.beaconDB.HasBlock(ctx, parentRoot) if !inPendingQueue && !isParentBlockInDB && s.hasPeer() { log.WithFields(logrus.Fields{"currentSlot": b.Block().Slot(), "parentRoot": hex.EncodeToString(parentRoot[:])}).Debug("Requesting parent block") parentRoots = append(parentRoots, parentRoot) continue } if !isParentBlockInDB { continue } // Process and broadcast the block. if err := s.processAndBroadcastBlock(ctx, b, blkRoot); err != nil { s.handleBlockProcessingError(ctx, err, b, blkRoot) continue } // Remove the processed block from the queue. if err := s.removeBlockFromQueue(b, blkRoot); err != nil { return err } log.WithFields(logrus.Fields{"slot": slot, "blockRoot": hex.EncodeToString(bytesutil.Trunc(blkRoot[:]))}).Debug("Processed pending block and cleared it in cache") } span.End() } return s.sendBatchRootRequest(ctx, parentRoots, randGen) } // startInnerSpan starts a new tracing span for an inner loop and returns the new context and span. func startInnerSpan(ctx context.Context, slot primitives.Slot) (context.Context, *trace.Span) { ctx, span := trace.StartSpan(ctx, "processPendingBlocks.InnerLoop") span.AddAttributes(trace.Int64Attribute("slot", int64(slot))) // lint:ignore uintcast -- This conversion is OK for tracing. return ctx, span } // getBlocksInQueue retrieves the blocks in the pending queue for a given slot. func (s *Service) getBlocksInQueue(slot primitives.Slot) []interfaces.ReadOnlySignedBeaconBlock { s.pendingQueueLock.RLock() defer s.pendingQueueLock.RUnlock() return s.pendingBlocksInCache(slot) } // removeBlockFromQueue removes a block from the pending queue. func (s *Service) removeBlockFromQueue(b interfaces.ReadOnlySignedBeaconBlock, blkRoot [32]byte) error { s.pendingQueueLock.Lock() defer s.pendingQueueLock.Unlock() if err := s.deleteBlockFromPendingQueue(b.Block().Slot(), b, blkRoot); err != nil { return err } return nil } // isBlockInQueue checks if a block's parent root is in the pending queue. func (s *Service) isBlockInQueue(parentRoot [32]byte) bool { s.pendingQueueLock.RLock() defer s.pendingQueueLock.RUnlock() return s.seenPendingBlocks[parentRoot] } func (s *Service) hasPeer() bool { return len(s.cfg.p2p.Peers().Connected()) > 0 } // processAndBroadcastBlock validates, processes, and broadcasts a block. // part of the function is to request missing blobs from peers if the block contains kzg commitments. func (s *Service) processAndBroadcastBlock(ctx context.Context, b interfaces.ReadOnlySignedBeaconBlock, blkRoot [32]byte) error { if err := s.validateBeaconBlock(ctx, b, blkRoot); err != nil { if !errors.Is(ErrOptimisticParent, err) { log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not validate block") return err } } peers := s.getBestPeers() peerCount := len(peers) if peerCount > 0 { if err := s.requestPendingBlobs(ctx, b.Block(), blkRoot, peers[rand.NewGenerator().Int()%peerCount]); err != nil { return err } } if err := s.cfg.chain.ReceiveBlock(ctx, b, blkRoot); err != nil { return err } s.setSeenBlockIndexSlot(b.Block().Slot(), b.Block().ProposerIndex()) pb, err := b.Proto() if err != nil { log.WithError(err).Debug("Could not get protobuf block") return err } if err := s.cfg.p2p.Broadcast(ctx, pb); err != nil { log.WithError(err).Debug("Could not broadcast block") return err } return nil } // handleBlockProcessingError handles errors during block processing. func (s *Service) handleBlockProcessingError(ctx context.Context, err error, b interfaces.ReadOnlySignedBeaconBlock, blkRoot [32]byte) { if blockchain.IsInvalidBlock(err) { s.setBadBlock(ctx, blkRoot) } log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not process block") } // getBestPeers returns the list of best peers based on finalized checkpoint epoch. func (s *Service) getBestPeers() []core.PeerID { _, bestPeers := s.cfg.p2p.Peers().BestFinalized(maxPeerRequest, s.cfg.chain.FinalizedCheckpt().Epoch) return bestPeers } func (s *Service) checkIfBlockIsBad( ctx context.Context, span *trace.Span, slot primitives.Slot, b interfaces.ReadOnlySignedBeaconBlock, blkRoot [32]byte, ) (keepProcessing bool, err error) { parentIsBad := s.hasBadBlock(b.Block().ParentRoot()) blockIsBad := s.hasBadBlock(blkRoot) // Check if parent is a bad block. if parentIsBad || blockIsBad { // Set block as bad if its parent block is bad too. if parentIsBad { s.setBadBlock(ctx, blkRoot) } // Remove block from queue. s.pendingQueueLock.Lock() if err = s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { s.pendingQueueLock.Unlock() return false, err } s.pendingQueueLock.Unlock() span.End() return false, nil } return true, nil } func (s *Service) sendBatchRootRequest(ctx context.Context, roots [][32]byte, randGen *rand.Rand) error { ctx, span := trace.StartSpan(ctx, "sendBatchRootRequest") defer span.End() roots = dedupRoots(roots) s.pendingQueueLock.RLock() for i := len(roots) - 1; i >= 0; i-- { r := roots[i] if s.seenPendingBlocks[r] || s.cfg.chain.BlockBeingSynced(r) { roots = append(roots[:i], roots[i+1:]...) } } s.pendingQueueLock.RUnlock() if len(roots) == 0 { return nil } bestPeers := s.getBestPeers() if len(bestPeers) == 0 { return nil } // Randomly choose a peer to query from our best peers. If that peer cannot return // all the requested blocks, we randomly select another peer. pid := bestPeers[randGen.Int()%len(bestPeers)] for i := 0; i < numOfTries; i++ { req := p2ptypes.BeaconBlockByRootsReq(roots) if len(roots) > int(params.BeaconNetworkConfig().MaxRequestBlocks) { req = roots[:params.BeaconNetworkConfig().MaxRequestBlocks] } if err := s.sendRecentBeaconBlocksRequest(ctx, &req, pid); err != nil { tracing.AnnotateError(span, err) log.WithError(err).Debug("Could not send recent block request") } newRoots := make([][32]byte, 0, len(roots)) s.pendingQueueLock.RLock() for _, rt := range roots { if !s.seenPendingBlocks[rt] { newRoots = append(newRoots, rt) } } s.pendingQueueLock.RUnlock() if len(newRoots) == 0 { break } // Choosing a new peer with the leftover set of // roots to request. roots = newRoots pid = bestPeers[randGen.Int()%len(bestPeers)] } return nil } func (s *Service) sortedPendingSlots() []primitives.Slot { s.pendingQueueLock.RLock() defer s.pendingQueueLock.RUnlock() items := s.slotToPendingBlocks.Items() ss := make([]primitives.Slot, 0, len(items)) for k := range items { slot := cacheKeyToSlot(k) ss = append(ss, slot) } sort.Slice(ss, func(i, j int) bool { return ss[i] < ss[j] }) return ss } // validatePendingSlots validates the pending blocks // by their slot. If they are before the current finalized // checkpoint, these blocks are removed from the queue. func (s *Service) validatePendingSlots() error { s.pendingQueueLock.Lock() defer s.pendingQueueLock.Unlock() oldBlockRoots := make(map[[32]byte]bool) cp := s.cfg.chain.FinalizedCheckpt() finalizedEpoch := cp.Epoch if s.slotToPendingBlocks == nil { return errors.New("slotToPendingBlocks cache can't be nil") } items := s.slotToPendingBlocks.Items() for k := range items { slot := cacheKeyToSlot(k) blks := s.pendingBlocksInCache(slot) for _, b := range blks { epoch := slots.ToEpoch(slot) // remove all descendant blocks of old blocks if oldBlockRoots[b.Block().ParentRoot()] { root, err := b.Block().HashTreeRoot() if err != nil { return err } oldBlockRoots[root] = true if err := s.deleteBlockFromPendingQueue(slot, b, root); err != nil { return err } continue } // don't process old blocks if finalizedEpoch > 0 && epoch <= finalizedEpoch { blkRoot, err := b.Block().HashTreeRoot() if err != nil { return err } oldBlockRoots[blkRoot] = true if err := s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil { return err } } } } return nil } func (s *Service) clearPendingSlots() { s.pendingQueueLock.Lock() defer s.pendingQueueLock.Unlock() s.slotToPendingBlocks.Flush() s.seenPendingBlocks = make(map[[32]byte]bool) } // Delete block from the list from the pending queue using the slot as key. // Note: this helper is not thread safe. func (s *Service) deleteBlockFromPendingQueue(slot primitives.Slot, b interfaces.ReadOnlySignedBeaconBlock, r [32]byte) error { mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock) blks := s.pendingBlocksInCache(slot) if len(blks) == 0 { return nil } // Defensive check to ignore nil blocks if err := blocks.BeaconBlockIsNil(b); err != nil { return err } newBlks := make([]interfaces.ReadOnlySignedBeaconBlock, 0, len(blks)) for _, blk := range blks { blkPb, err := blk.Proto() if err != nil { return err } bPb, err := b.Proto() if err != nil { return err } if equality.DeepEqual(blkPb, bPb) { continue } newBlks = append(newBlks, blk) } if len(newBlks) == 0 { s.slotToPendingBlocks.Delete(slotToCacheKey(slot)) delete(s.seenPendingBlocks, r) return nil } // Decrease exp time in proportion to how many blocks are still in the cache for slot key. d := pendingBlockExpTime / time.Duration(len(newBlks)) if err := s.slotToPendingBlocks.Replace(slotToCacheKey(slot), newBlks, d); err != nil { return err } delete(s.seenPendingBlocks, r) return nil } // Insert block to the list in the pending queue using the slot as key. // Note: this helper is not thread safe. func (s *Service) insertBlockToPendingQueue(_ primitives.Slot, b interfaces.ReadOnlySignedBeaconBlock, r [32]byte) error { mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock) if s.seenPendingBlocks[r] { return nil } if err := s.addPendingBlockToCache(b); err != nil { return err } s.seenPendingBlocks[r] = true return nil } // This returns signed beacon blocks given input key from slotToPendingBlocks. func (s *Service) pendingBlocksInCache(slot primitives.Slot) []interfaces.ReadOnlySignedBeaconBlock { k := slotToCacheKey(slot) value, ok := s.slotToPendingBlocks.Get(k) if !ok { return []interfaces.ReadOnlySignedBeaconBlock{} } blks, ok := value.([]interfaces.ReadOnlySignedBeaconBlock) if !ok { return []interfaces.ReadOnlySignedBeaconBlock{} } return blks } // This adds input signed beacon block to slotToPendingBlocks cache. func (s *Service) addPendingBlockToCache(b interfaces.ReadOnlySignedBeaconBlock) error { if err := blocks.BeaconBlockIsNil(b); err != nil { return err } blks := s.pendingBlocksInCache(b.Block().Slot()) if len(blks) >= maxBlocksPerSlot { return nil } blks = append(blks, b) k := slotToCacheKey(b.Block().Slot()) s.slotToPendingBlocks.Set(k, blks, pendingBlockExpTime) return nil } // This converts input string to slot. func cacheKeyToSlot(s string) primitives.Slot { b := []byte(s) return bytesutil.BytesToSlotBigEndian(b) } // This converts input slot to a key to be used for slotToPendingBlocks cache. func slotToCacheKey(s primitives.Slot) string { b := bytesutil.SlotToBytesBigEndian(s) return string(b) } func dedupRoots(roots [][32]byte) [][32]byte { newRoots := make([][32]byte, 0, len(roots)) rootMap := make(map[[32]byte]bool, len(roots)) for i, r := range roots { if rootMap[r] { continue } rootMap[r] = true newRoots = append(newRoots, roots[i]) } return newRoots }