package equality import ( "reflect" "unsafe" types "github.com/prysmaticlabs/prysm/v3/consensus-types/primitives" "google.golang.org/protobuf/proto" ) // During deepValueEqual, must keep track of checks that are // in progress. The comparison algorithm assumes that all // checks in progress are true when it reencounters them. // Visited comparisons are stored in a map indexed by visit. type visit struct { a1 unsafe.Pointer // #nosec G103 -- Test use only a2 unsafe.Pointer // #nosec G103 -- Test use only typ reflect.Type } // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // This file extends Go's reflect.DeepEqual function into a ssz.DeepEqual // function that is compliant with the supported types of ssz and its // intricacies when determining equality of empty values. // // Tests for deep equality using reflected types. The map argument tracks // comparisons that have already been seen, which allows short circuiting on // recursive types. func deepValueEqual(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool { if !v1.IsValid() || !v2.IsValid() { return v1.IsValid() == v2.IsValid() } if v1.Type() != v2.Type() { return false } // We want to avoid putting more in the visited map than we need to. // For any possible reference cycle that might be encountered, // hard(t) needs to return true for at least one of the types in the cycle. hard := func(k reflect.Kind) bool { switch k { case reflect.Slice, reflect.Ptr, reflect.Interface: return true } return false } if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) { addr1 := unsafe.Pointer(v1.UnsafeAddr()) // #nosec G103 -- Test compare only addr2 := unsafe.Pointer(v2.UnsafeAddr()) // #nosec G103 -- Test compare only if uintptr(addr1) > uintptr(addr2) { // Canonicalize order to reduce number of entries in visited. // Assumes non-moving garbage collector. addr1, addr2 = addr2, addr1 } // Short circuit if references are already seen. typ := v1.Type() v := visit{addr1, addr2, typ} if visited[v] { return true } // Remember for later. visited[v] = true } switch v1.Kind() { case reflect.Array: for i := 0; i < v1.Len(); i++ { if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true case reflect.Slice: if v1.IsNil() && v2.Len() == 0 { return true } if v1.Len() == 0 && v2.IsNil() { return true } if v1.IsNil() && v2.IsNil() { return true } if v1.Len() != v2.Len() { return false } if v1.Pointer() == v2.Pointer() { return true } for i := 0; i < v1.Len(); i++ { if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true case reflect.Interface: if v1.IsNil() || v2.IsNil() { return v1.IsNil() == v2.IsNil() } return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1) case reflect.Ptr: if v1.Pointer() == v2.Pointer() { return true } return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1) case reflect.Struct: for i, n := 0, v1.NumField(); i < n; i++ { if !deepValueEqual(v1.Field(i), v2.Field(i), visited, depth+1) { return false } } return true default: return deepValueBaseTypeEqual(v1, v2) } } func deepValueEqualExportedOnly(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool { if !v1.IsValid() || !v2.IsValid() { return v1.IsValid() == v2.IsValid() } if v1.Type() != v2.Type() { return false } // We want to avoid putting more in the visited map than we need to. // For any possible reference cycle that might be encountered, // hard(t) needs to return true for at least one of the types in the cycle. hard := func(k reflect.Kind) bool { switch k { case reflect.Slice, reflect.Ptr, reflect.Interface: return true } return false } if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) { addr1 := unsafe.Pointer(v1.UnsafeAddr()) // #nosec G103 -- Test compare only addr2 := unsafe.Pointer(v2.UnsafeAddr()) // #nosec G103 -- Test compare only if uintptr(addr1) > uintptr(addr2) { // Canonicalize order to reduce number of entries in visited. // Assumes non-moving garbage collector. addr1, addr2 = addr2, addr1 } // Short circuit if references are already seen. typ := v1.Type() v := visit{addr1, addr2, typ} if visited[v] { return true } // Remember for later. visited[v] = true } switch v1.Kind() { case reflect.Array: for i := 0; i < v1.Len(); i++ { if !deepValueEqualExportedOnly(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true case reflect.Slice: if v1.IsNil() && v2.Len() == 0 { return true } if v1.Len() == 0 && v2.IsNil() { return true } if v1.IsNil() && v2.IsNil() { return true } if v1.Len() != v2.Len() { return false } if v1.Pointer() == v2.Pointer() { return true } for i := 0; i < v1.Len(); i++ { if !deepValueEqualExportedOnly(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true case reflect.Interface: if v1.IsNil() || v2.IsNil() { return v1.IsNil() == v2.IsNil() } return deepValueEqualExportedOnly(v1.Elem(), v2.Elem(), visited, depth+1) case reflect.Ptr: if v1.Pointer() == v2.Pointer() { return true } return deepValueEqualExportedOnly(v1.Elem(), v2.Elem(), visited, depth+1) case reflect.Struct: for i, n := 0, v1.NumField(); i < n; i++ { v1Field := v1.Field(i) v2Field := v2.Field(i) if !v1Field.CanInterface() || !v2Field.CanInterface() { // Continue for unexported fields, since they cannot be read anyways. continue } if !deepValueEqualExportedOnly(v1Field, v2Field, visited, depth+1) { return false } } return true default: return deepValueBaseTypeEqual(v1, v2) } } func deepValueBaseTypeEqual(v1, v2 reflect.Value) bool { switch v1.Kind() { case reflect.String: return v1.String() == v2.String() case reflect.Uint64: switch v1.Type().Name() { case "Epoch": return v1.Interface().(types.Epoch) == v2.Interface().(types.Epoch) case "Slot": return v1.Interface().(types.Slot) == v2.Interface().(types.Slot) case "ValidatorIndex": return v1.Interface().(types.ValidatorIndex) == v2.Interface().(types.ValidatorIndex) case "CommitteeIndex": return v1.Interface().(types.CommitteeIndex) == v2.Interface().(types.CommitteeIndex) } return v1.Interface().(uint64) == v2.Interface().(uint64) case reflect.Uint32: return v1.Interface().(uint32) == v2.Interface().(uint32) case reflect.Int32: return v1.Interface().(int32) == v2.Interface().(int32) case reflect.Uint16: return v1.Interface().(uint16) == v2.Interface().(uint16) case reflect.Uint8: return v1.Interface().(uint8) == v2.Interface().(uint8) case reflect.Bool: return v1.Interface().(bool) == v2.Interface().(bool) default: return false } } // DeepEqual reports whether two SSZ-able values x and y are “deeply equal,” defined as follows: // Two values of identical type are deeply equal if one of the following cases applies: // // Values of distinct types are never deeply equal. // // Array values are deeply equal when their corresponding elements are deeply equal. // // Struct values are deeply equal if their corresponding fields, // both exported and unexported, are deeply equal. // // Interface values are deeply equal if they hold deeply equal concrete values. // // Pointer values are deeply equal if they are equal using Go's == operator // or if they point to deeply equal values. // // Slice values are deeply equal when all of the following are true: // they are both nil, one is nil and the other is empty or vice-versa, // they have the same length, and either they point to the same initial entry of the same array // (that is, &x[0] == &y[0]) or their corresponding elements (up to length) are deeply equal. // // Other values - numbers, bools, strings, and channels - are deeply equal // if they are equal using Go's == operator. // // In general DeepEqual is a recursive relaxation of Go's == operator. // However, this idea is impossible to implement without some inconsistency. // Specifically, it is possible for a value to be unequal to itself, // either because it is of func type (uncomparable in general) // or because it is a floating-point NaN value (not equal to itself in floating-point comparison), // or because it is an array, struct, or interface containing // such a value. // // On the other hand, pointer values are always equal to themselves, // even if they point at or contain such problematic values, // because they compare equal using Go's == operator, and that // is a sufficient condition to be deeply equal, regardless of content. // DeepEqual has been defined so that the same short-cut applies // to slices and maps: if x and y are the same slice or the same map, // they are deeply equal regardless of content. // // As DeepEqual traverses the data values it may find a cycle. The // second and subsequent times that DeepEqual compares two pointer // values that have been compared before, it treats the values as // equal rather than examining the values to which they point. // This ensures that DeepEqual terminates. // // Credits go to the Go team as this is an extension of the official Go source code's // reflect.DeepEqual function to handle special SSZ edge cases. func DeepEqual(x, y interface{}) bool { if x == nil || y == nil { return x == y } v1 := reflect.ValueOf(x) v2 := reflect.ValueOf(y) if v1.Type() != v2.Type() { return false } if IsProto(x) && IsProto(y) { // Exclude unexported fields for protos. return deepValueEqualExportedOnly(v1, v2, make(map[visit]bool), 0) } return deepValueEqual(v1, v2, make(map[visit]bool), 0) } func IsProto(item interface{}) bool { typ := reflect.TypeOf(item) kind := typ.Kind() if kind != reflect.Slice && kind != reflect.Array && kind != reflect.Map { _, ok := item.(proto.Message) return ok } elemTyp := typ.Elem() modelType := reflect.TypeOf((*proto.Message)(nil)).Elem() return elemTyp.Implements(modelType) }