package protoarray import ( "bytes" "context" "fmt" "github.com/pkg/errors" types "github.com/prysmaticlabs/eth2-types" "github.com/prysmaticlabs/prysm/shared/params" "go.opencensus.io/trace" ) // This defines the minimal number of block nodes that can be in the tree // before getting pruned upon new finalization. const defaultPruneThreshold = 256 // This tracks the last reported head root. Used for metrics. var lastHeadRoot [32]byte // New initializes a new fork choice store. func New(justifiedEpoch, finalizedEpoch types.Epoch, finalizedRoot [32]byte) *ForkChoice { s := &Store{ justifiedEpoch: justifiedEpoch, finalizedEpoch: finalizedEpoch, finalizedRoot: finalizedRoot, nodes: make([]*Node, 0), nodesIndices: make(map[[32]byte]uint64), canonicalNodes: make(map[[32]byte]bool), pruneThreshold: defaultPruneThreshold, } b := make([]uint64, 0) v := make([]Vote, 0) return &ForkChoice{store: s, balances: b, votes: v} } // Head returns the head root from fork choice store. // It firsts computes validator's balance changes then recalculates block tree from leaves to root. func (f *ForkChoice) Head( ctx context.Context, justifiedEpoch types.Epoch, justifiedRoot [32]byte, justifiedStateBalances []uint64, finalizedEpoch types.Epoch, ) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.Head") defer span.End() f.votesLock.Lock() defer f.votesLock.Unlock() calledHeadCount.Inc() newBalances := justifiedStateBalances // Using the write lock here because `updateCanonicalNodes` that gets called subsequently requires a write operation. f.store.nodesLock.Lock() defer f.store.nodesLock.Unlock() deltas, newVotes, err := computeDeltas(ctx, f.store.nodesIndices, f.votes, f.balances, newBalances) if err != nil { return [32]byte{}, errors.Wrap(err, "Could not compute deltas") } f.votes = newVotes if err := f.store.applyWeightChanges(ctx, justifiedEpoch, finalizedEpoch, deltas); err != nil { return [32]byte{}, errors.Wrap(err, "Could not apply score changes") } f.balances = newBalances return f.store.head(ctx, justifiedRoot) } // ProcessAttestation processes attestation for vote accounting, it iterates around validator indices // and update their votes accordingly. func (f *ForkChoice) ProcessAttestation(ctx context.Context, validatorIndices []uint64, blockRoot [32]byte, targetEpoch types.Epoch) { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessAttestation") defer span.End() f.votesLock.Lock() defer f.votesLock.Unlock() for _, index := range validatorIndices { // Validator indices will grow the vote cache. for index >= uint64(len(f.votes)) { f.votes = append(f.votes, Vote{currentRoot: params.BeaconConfig().ZeroHash, nextRoot: params.BeaconConfig().ZeroHash}) } // Newly allocated vote if the root fields are untouched. newVote := f.votes[index].nextRoot == params.BeaconConfig().ZeroHash && f.votes[index].currentRoot == params.BeaconConfig().ZeroHash // Vote gets updated if it's newly allocated or high target epoch. if newVote || targetEpoch > f.votes[index].nextEpoch { f.votes[index].nextEpoch = targetEpoch f.votes[index].nextRoot = blockRoot } } processedAttestationCount.Inc() } // ProcessBlock processes a new block by inserting it to the fork choice store. func (f *ForkChoice) ProcessBlock( ctx context.Context, slot types.Slot, blockRoot, parentRoot, graffiti [32]byte, justifiedEpoch, finalizedEpoch types.Epoch, ) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessBlock") defer span.End() return f.store.insert(ctx, slot, blockRoot, parentRoot, graffiti, justifiedEpoch, finalizedEpoch) } // Prune prunes the fork choice store with the new finalized root. The store is only pruned if the input // root is different than the current store finalized root, and the number of the store has met prune threshold. func (f *ForkChoice) Prune(ctx context.Context, finalizedRoot [32]byte) error { return f.store.prune(ctx, finalizedRoot) } // Nodes returns the copied list of block nodes in the fork choice store. func (f *ForkChoice) Nodes() []*Node { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() cpy := make([]*Node, len(f.store.nodes)) copy(cpy, f.store.nodes) return cpy } // Store returns the fork choice store object which contains all the information regarding proto array fork choice. func (f *ForkChoice) Store() *Store { f.store.nodesLock.Lock() defer f.store.nodesLock.Unlock() return f.store } // Node returns the copied node in the fork choice store. func (f *ForkChoice) Node(root [32]byte) *Node { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() index, ok := f.store.nodesIndices[root] if !ok { return nil } return copyNode(f.store.nodes[index]) } // HasNode returns true if the node exists in fork choice store, // false else wise. func (f *ForkChoice) HasNode(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() _, ok := f.store.nodesIndices[root] return ok } // HasParent returns true if the node parent exists in fork choice store, // false else wise. func (f *ForkChoice) HasParent(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() i, ok := f.store.nodesIndices[root] if !ok || i >= uint64(len(f.store.nodes)) { return false } return f.store.nodes[i].parent != NonExistentNode } // IsCanonical returns true if the given root is part of the canonical chain. func (f *ForkChoice) IsCanonical(root [32]byte) bool { f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() return f.store.canonicalNodes[root] } // AncestorRoot returns the ancestor root of input block root at a given slot. func (f *ForkChoice) AncestorRoot(ctx context.Context, root [32]byte, slot types.Slot) ([]byte, error) { ctx, span := trace.StartSpan(ctx, "protoArray.AncestorRoot") defer span.End() f.store.nodesLock.RLock() defer f.store.nodesLock.RUnlock() i, ok := f.store.nodesIndices[root] if !ok { return nil, errors.New("node does not exist") } if i >= uint64(len(f.store.nodes)) { return nil, errors.New("node index out of range") } for f.store.nodes[i].slot > slot { if ctx.Err() != nil { return nil, ctx.Err() } i = f.store.nodes[i].parent if i >= uint64(len(f.store.nodes)) { return nil, errors.New("node index out of range") } } return f.store.nodes[i].root[:], nil } // PruneThreshold of fork choice store. func (s *Store) PruneThreshold() uint64 { return s.pruneThreshold } // JustifiedEpoch of fork choice store. func (s *Store) JustifiedEpoch() types.Epoch { return s.justifiedEpoch } // FinalizedEpoch of fork choice store. func (s *Store) FinalizedEpoch() types.Epoch { return s.finalizedEpoch } // Nodes of fork choice store. func (s *Store) Nodes() []*Node { s.nodesLock.RLock() defer s.nodesLock.RUnlock() return s.nodes } // NodesIndices of fork choice store. func (s *Store) NodesIndices() map[[32]byte]uint64 { s.nodesLock.RLock() defer s.nodesLock.RUnlock() return s.nodesIndices } // head starts from justified root and then follows the best descendant links // to find the best block for head. func (s *Store) head(ctx context.Context, justifiedRoot [32]byte) ([32]byte, error) { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.head") defer span.End() // Justified index has to be valid in node indices map, and can not be out of bound. justifiedIndex, ok := s.nodesIndices[justifiedRoot] if !ok { return [32]byte{}, errUnknownJustifiedRoot } if justifiedIndex >= uint64(len(s.nodes)) { return [32]byte{}, errInvalidJustifiedIndex } justifiedNode := s.nodes[justifiedIndex] bestDescendantIndex := justifiedNode.bestDescendant // If the justified node doesn't have a best descendent, // the best node is itself. if bestDescendantIndex == NonExistentNode { bestDescendantIndex = justifiedIndex } if bestDescendantIndex >= uint64(len(s.nodes)) { return [32]byte{}, errInvalidBestDescendantIndex } bestNode := s.nodes[bestDescendantIndex] if !s.viableForHead(bestNode) { return [32]byte{}, fmt.Errorf("head at slot %d with weight %d is not eligible, finalizedEpoch %d != %d, justifiedEpoch %d != %d", bestNode.slot, bestNode.weight/10e9, bestNode.finalizedEpoch, s.finalizedEpoch, bestNode.justifiedEpoch, s.justifiedEpoch) } // Update metrics. if bestNode.root != lastHeadRoot { headChangesCount.Inc() headSlotNumber.Set(float64(bestNode.slot)) lastHeadRoot = bestNode.root } // Update canonical mapping given the head root. if err := s.updateCanonicalNodes(ctx, bestNode.root); err != nil { return [32]byte{}, err } return bestNode.root, nil } // updateCanonicalNodes updates the canonical nodes mapping given the input block root. func (s *Store) updateCanonicalNodes(ctx context.Context, root [32]byte) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.updateCanonicalNodes") defer span.End() // Set the input node to canonical. s.canonicalNodes[root] = true // Get the input's parent node index. i := s.nodesIndices[root] n := s.nodes[i] p := n.parent for p != NonExistentNode { if ctx.Err() != nil { return ctx.Err() } // Get the parent node, if the node is already in canonical mapping, // we can be sure rest of the ancestors are canonical. Exit early. n = s.nodes[p] if s.canonicalNodes[n.root] { break } // Set parent node to canonical. Repeat until parent node index is undefined. s.canonicalNodes[n.root] = true p = n.parent } return nil } // insert registers a new block node to the fork choice store's node list. // It then updates the new node's parent with best child and descendant node. func (s *Store) insert(ctx context.Context, slot types.Slot, root, parent, graffiti [32]byte, justifiedEpoch, finalizedEpoch types.Epoch) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert") defer span.End() s.nodesLock.Lock() defer s.nodesLock.Unlock() // Return if the block has been inserted into Store before. if _, ok := s.nodesIndices[root]; ok { return nil } index := uint64(len(s.nodes)) parentIndex, ok := s.nodesIndices[parent] // Mark genesis block's parent as non existent. if !ok { parentIndex = NonExistentNode } n := &Node{ slot: slot, root: root, graffiti: graffiti, parent: parentIndex, justifiedEpoch: justifiedEpoch, finalizedEpoch: finalizedEpoch, bestChild: NonExistentNode, bestDescendant: NonExistentNode, weight: 0, } s.nodesIndices[root] = index s.nodes = append(s.nodes, n) // Update parent with the best child and descendent only if it's available. if n.parent != NonExistentNode { if err := s.updateBestChildAndDescendant(parentIndex, index); err != nil { return err } } // Update metrics. processedBlockCount.Inc() nodeCount.Set(float64(len(s.nodes))) return nil } // applyWeightChanges iterates backwards through the nodes in store. It checks all nodes parent // and its best child. For each node, it updates the weight with input delta and // back propagate the nodes delta to its parents delta. After scoring changes, // the best child is then updated along with best descendant. func (s *Store) applyWeightChanges(ctx context.Context, justifiedEpoch, finalizedEpoch types.Epoch, delta []int) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges") defer span.End() // The length of the nodes can not be different than length of the delta. if len(s.nodes) != len(delta) { return errInvalidDeltaLength } // Update the justified / finalized epochs in store if necessary. if s.justifiedEpoch != justifiedEpoch || s.finalizedEpoch != finalizedEpoch { s.justifiedEpoch = justifiedEpoch s.finalizedEpoch = finalizedEpoch } // Iterate backwards through all index to node in store. for i := len(s.nodes) - 1; i >= 0; i-- { n := s.nodes[i] // There is no need to adjust the balances or manage parent of the zero hash, it // is an alias to the genesis block. if n.root == params.BeaconConfig().ZeroHash { continue } nodeDelta := delta[i] if nodeDelta < 0 { // A node's weight can not be negative but the delta can be negative. if int(n.weight)+nodeDelta < 0 { n.weight = 0 } else { // Absolute value of node delta. d := nodeDelta if nodeDelta < 0 { d *= -1 } // Subtract node's weight. n.weight -= uint64(d) } } else { // Add node's weight. n.weight += uint64(nodeDelta) } s.nodes[i] = n // Update parent's best child and descendent if the node has a known parent. if n.parent != NonExistentNode { // Protection against node parent index out of bound. This should not happen. if int(n.parent) >= len(delta) { return errInvalidParentDelta } // Back propagate the nodes delta to its parent. delta[n.parent] += nodeDelta } } for i := len(s.nodes) - 1; i >= 0; i-- { n := s.nodes[i] if n.parent != NonExistentNode { if int(n.parent) >= len(delta) { return errInvalidParentDelta } if err := s.updateBestChildAndDescendant(n.parent, uint64(i)); err != nil { return err } } } return nil } // updateBestChildAndDescendant updates parent node's best child and descendent. // It looks at input parent node and input child node and potentially modifies parent's best // child and best descendent indices. // There are four outcomes: // 1.) The child is already the best child but it's now invalid due to a FFG change and should be removed. // 2.) The child is already the best child and the parent is updated with the new best descendant. // 3.) The child is not the best child but becomes the best child. // 4.) The child is not the best child and does not become best child. func (s *Store) updateBestChildAndDescendant(parentIndex, childIndex uint64) error { // Protection against parent index out of bound, this should not happen. if parentIndex >= uint64(len(s.nodes)) { return errInvalidNodeIndex } parent := s.nodes[parentIndex] // Protection against child index out of bound, again this should not happen. if childIndex >= uint64(len(s.nodes)) { return errInvalidNodeIndex } child := s.nodes[childIndex] // Is the child viable to become head? Based on justification and finalization rules. childLeadsToViableHead, err := s.leadsToViableHead(child) if err != nil { return err } // Define 3 variables for the 3 outcomes mentioned above. This is to // set `parent.bestChild` and `parent.bestDescendant` to. These // aliases are to assist readability. changeToNone := []uint64{NonExistentNode, NonExistentNode} bestDescendant := child.bestDescendant if bestDescendant == NonExistentNode { bestDescendant = childIndex } changeToChild := []uint64{childIndex, bestDescendant} noChange := []uint64{parent.bestChild, parent.bestDescendant} var newParentChild []uint64 if parent.bestChild != NonExistentNode { if parent.bestChild == childIndex && !childLeadsToViableHead { // If the child is already the best child of the parent but it's not viable for head, // we should remove it. (Outcome 1) newParentChild = changeToNone } else if parent.bestChild == childIndex { // If the child is already the best child of the parent, set it again to ensure best // descendent of the parent is updated. (Outcome 2) newParentChild = changeToChild } else { // Protection against parent's best child going out of bound. if parent.bestChild > uint64(len(s.nodes)) { return errInvalidBestDescendantIndex } bestChild := s.nodes[parent.bestChild] // Is current parent's best child viable to be head? Based on justification and finalization rules. bestChildLeadsToViableHead, err := s.leadsToViableHead(bestChild) if err != nil { return err } if childLeadsToViableHead && !bestChildLeadsToViableHead { // The child leads to a viable head, but the current parent's best child doesnt. newParentChild = changeToChild } else if !childLeadsToViableHead && bestChildLeadsToViableHead { // The child doesn't lead to a viable head, the current parent's best child does. newParentChild = noChange } else if child.weight == bestChild.weight { // If both are viable, compare their weights. // Tie-breaker of equal weights by root. if bytes.Compare(child.root[:], bestChild.root[:]) > 0 { newParentChild = changeToChild } else { newParentChild = noChange } } else { // Choose winner by weight. if child.weight > bestChild.weight { newParentChild = changeToChild } else { newParentChild = noChange } } } } else { if childLeadsToViableHead { // If parent doesn't have a best child and the child is viable. newParentChild = changeToChild } else { // If parent doesn't have a best child and the child is not viable. newParentChild = noChange } } // Update parent with the outcome. parent.bestChild = newParentChild[0] parent.bestDescendant = newParentChild[1] s.nodes[parentIndex] = parent return nil } // prune prunes the store with the new finalized root. The tree is only // pruned if the input finalized root are different than the one in stored and // the number of the nodes in store has met prune threshold. func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte) error { ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune") defer span.End() s.nodesLock.Lock() defer s.nodesLock.Unlock() // The node would have seen finalized root or else it'd // be able to prune it. finalizedIndex, ok := s.nodesIndices[finalizedRoot] if !ok { return errUnknownFinalizedRoot } // The number of the nodes has not met the prune threshold. // Pruning at small numbers incurs more cost than benefit. if finalizedIndex < s.pruneThreshold { return nil } // Remove the key/values from indices mapping on to be pruned nodes. // These nodes are before the finalized index. for i := uint64(0); i < finalizedIndex; i++ { if int(i) >= len(s.nodes) { return errInvalidNodeIndex } delete(s.nodesIndices, s.nodes[i].root) } // Finalized index can not be greater than the length of the node. if int(finalizedIndex) >= len(s.nodes) { return errors.New("invalid finalized index") } s.nodes = s.nodes[finalizedIndex:] // Adjust indices to node mapping. for k, v := range s.nodesIndices { s.nodesIndices[k] = v - finalizedIndex } // Iterate through existing nodes and adjust its parent/child indices with the newly pruned layout. for i, node := range s.nodes { if node.parent != NonExistentNode { // If the node's parent is less than finalized index, set it to non existent. if node.parent >= finalizedIndex { node.parent -= finalizedIndex } else { node.parent = NonExistentNode } } if node.bestChild != NonExistentNode { if node.bestChild < finalizedIndex { return errInvalidBestChildIndex } node.bestChild -= finalizedIndex } if node.bestDescendant != NonExistentNode { if node.bestDescendant < finalizedIndex { return errInvalidBestDescendantIndex } node.bestDescendant -= finalizedIndex } s.nodes[i] = node } prunedCount.Inc() return nil } // leadsToViableHead returns true if the node or the best descendent of the node is viable for head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) leadsToViableHead(node *Node) (bool, error) { var bestDescendentViable bool bestDescendentIndex := node.bestDescendant // If the best descendant is not part of the leaves. if bestDescendentIndex != NonExistentNode { // Protection against out of bound, best descendent index can not be // exceeds length of nodes list. if bestDescendentIndex >= uint64(len(s.nodes)) { return false, errInvalidBestDescendantIndex } bestDescendentNode := s.nodes[bestDescendentIndex] bestDescendentViable = s.viableForHead(bestDescendentNode) } // The node is viable as long as the best descendent is viable. return bestDescendentViable || s.viableForHead(node), nil } // viableForHead returns true if the node is viable to head. // Any node with diff finalized or justified epoch than the ones in fork choice store // should not be viable to head. func (s *Store) viableForHead(node *Node) bool { // `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`. // It's also viable if we are in genesis epoch. justified := s.justifiedEpoch == node.justifiedEpoch || s.justifiedEpoch == 0 finalized := s.finalizedEpoch == node.finalizedEpoch || s.finalizedEpoch == 0 return justified && finalized }