prysm-pulse/beacon-chain/slasher/params.go
Joel Rousseau acc307b959
Command-line interface for visualizing min/max span bucket (#13748)
* add max/min span visualisation tool cli

* go mod tidy

* lint imports

* remove typo

* fix epoch table value

* fix deepsource

* add dep to bazel

* fix dep import order

* change command name from span to slasher-span-display

* change command args style using - instead of _

* sed s/CONFIGURATION/SLASHER PARAMS//

* change double neg to double pos condition

* remove unused anonymous func

* better function naming

* add range condition

* [deepsource] Fix Empty slice literal used to declare a variable
    GO-W1027

* correct typo

* do not show incorrect epochs due to round robin

* fix import

---------

Co-authored-by: Manu NALEPA <enalepa@offchainlabs.com>
2024-03-27 16:15:39 +00:00

178 lines
6.8 KiB
Go

package slasher
import (
ssz "github.com/prysmaticlabs/fastssz"
"github.com/prysmaticlabs/prysm/v5/consensus-types/primitives"
)
// Parameters for slashing detection.
//
// To properly access the element at epoch `e` for a validator index `i`, we leverage helper
// functions from these parameter values as nice abstractions. the following parameters are
// required for the helper functions defined in this file.
type Parameters struct {
chunkSize uint64 // C - defines how many elements are in a chunk for a validator min or max span slice.
validatorChunkSize uint64 // K - defines how many validators' chunks we store in a single flat byte slice on disk.
historyLength primitives.Epoch // H - defines how many epochs we keep of min or max spans.
}
// ChunkSize returns the chunk size.
func (p *Parameters) ChunkSize() uint64 {
return p.chunkSize
}
// ValidatorChunkSize returns the validator chunk size.
func (p *Parameters) ValidatorChunkSize() uint64 {
return p.validatorChunkSize
}
// HistoryLength returns the history length.
func (p *Parameters) HistoryLength() primitives.Epoch {
return p.historyLength
}
// DefaultParams defines default values for slasher's important parameters, defined
// based on optimization analysis for best and worst case scenarios for
// slasher's performance.
//
// The default values for chunkSize and validatorChunkSize were
// decided after an optimization analysis performed by the Sigma Prime team.
// See: https://hackmd.io/@sproul/min-max-slasher#1D-vs-2D for more information.
// We decide to keep 4096 epochs worth of data in each validator's min max spans.
func DefaultParams() *Parameters {
return &Parameters{
chunkSize: 16,
validatorChunkSize: 256,
historyLength: 4096,
}
}
func NewParams(chunkSize, validatorChunkSize uint64, historyLength primitives.Epoch) *Parameters {
return &Parameters{
chunkSize: chunkSize,
validatorChunkSize: validatorChunkSize,
historyLength: historyLength,
}
}
// ChunkIndex Validator min and max spans are split into chunks of length C = chunkSize.
// That is, if we are keeping N epochs worth of attesting history, finding what
// chunk a certain epoch, e, falls into can be computed as (e % N) / C. For example,
// if we are keeping 6 epochs worth of data, and we have chunks of size 2, then epoch
// 4 will fall into chunk index (4 % 6) / 2 = 2.
//
// span = [-, -, -, -, -, -]
// chunked = [[-, -], [-, -], [-, -]]
// |-> epoch 4, chunk idx 2
func (p *Parameters) chunkIndex(epoch primitives.Epoch) uint64 {
return uint64(epoch.Mod(uint64(p.historyLength)).Div(p.chunkSize))
}
// When storing data on disk, we take K validators' chunks. To figure out
// which validator chunk index a validator index is for, we simply divide
// the validator index, i, by K.
func (p *Parameters) validatorChunkIndex(validatorIndex primitives.ValidatorIndex) uint64 {
return uint64(validatorIndex.Div(p.validatorChunkSize))
}
// Returns the epoch at the 0th index of a chunk at the specified chunk index.
// For example, if we have chunks of length 3 and we ask to give us the
// first epoch of chunk1, then:
//
// chunk0 chunk1 chunk2
// | | |
// [[-, -, -], [-, -, -], [-, -, -], ...]
// |
// -> first epoch of chunk 1 equals 3
func (p *Parameters) firstEpoch(chunkIndex uint64) primitives.Epoch {
return primitives.Epoch(chunkIndex * p.chunkSize)
}
// Returns the epoch at the last index of a chunk at the specified chunk index.
// For example, if we have chunks of length 3 and we ask to give us the
// last epoch of chunk1, then:
//
// chunk0 chunk1 chunk2
// | | |
// [[-, -, -], [-, -, -], [-, -, -], ...]
// |
// -> last epoch of chunk 1 equals 5
func (p *Parameters) lastEpoch(chunkIndex uint64) primitives.Epoch {
return p.firstEpoch(chunkIndex).Add(p.chunkSize - 1)
}
// Given a validator index, and epoch, we compute the exact index
// into our flat slice on disk which stores K validators' chunks, each
// chunk of size C. For example, if C = 3 and K = 3, the data we store
// on disk is a flat slice as follows:
//
// val0 val1 val2
// | | |
// { } { } { }
// [-, -, -, -, -, -, -, -, -]
//
// Then, figuring out the exact cell index for epoch 1 for validator 2 is computed
// with (validatorIndex % K)*C + (epoch % C), which gives us:
//
// (2 % 3)*3 + (1 % 3) =
// 2*3 + 1 =
// 7
//
// val0 val1 val2
// | | |
// { } { } { }
// [-, -, -, -, -, -, -, -, -]
// |-> epoch 1 for val2
func (p *Parameters) cellIndex(validatorIndex primitives.ValidatorIndex, epoch primitives.Epoch) uint64 {
validatorChunkOffset := p.validatorOffset(validatorIndex)
chunkOffset := p.chunkOffset(epoch)
return validatorChunkOffset*p.chunkSize + chunkOffset
}
// Computes the start index of a chunk given an epoch.
func (p *Parameters) chunkOffset(epoch primitives.Epoch) uint64 {
return uint64(epoch.Mod(p.chunkSize))
}
// Computes the start index of a validator chunk given a validator index.
func (p *Parameters) validatorOffset(validatorIndex primitives.ValidatorIndex) uint64 {
return uint64(validatorIndex.Mod(p.validatorChunkSize))
}
// Construct a key for our database schema given a validator chunk index and chunk index.
// This calculation gives us a uint encoded as bytes that uniquely represents
// a 2D chunk given a validator index and epoch value.
// First, we compute the validator chunk index for the validator index,
// Then, we compute the chunk index for the epoch.
// If chunkSize C = 3 and validatorChunkSize K = 3, and historyLength H = 12,
// if we are looking for epoch 6 and validator 6, then
//
// validatorChunkIndex = 6 / 3 = 2
// chunkIndex = (6 % historyLength) / 3 = (6 % 12) / 3 = 2
//
// Then we compute how many chunks there are per max span, known as the "width"
//
// width = H / C = 12 / 3 = 4
//
// So every span has 4 chunks. Then, we have a disk key calculated by
//
// validatorChunkIndex * width + chunkIndex = 2*4 + 2 = 10
func (p *Parameters) flatSliceID(validatorChunkIndex, chunkIndex uint64) []byte {
width := p.historyLength.Div(p.chunkSize)
return ssz.MarshalUint64(make([]byte, 0), uint64(width.Mul(validatorChunkIndex).Add(chunkIndex)))
}
// ValidatorIndexesInChunk Given a validator chunk index, we determine all the validators
// indices that will belong in that chunk.
func (p *Parameters) ValidatorIndexesInChunk(validatorChunkIndex uint64) []primitives.ValidatorIndex {
validatorIndices := make([]primitives.ValidatorIndex, 0)
low := validatorChunkIndex * p.validatorChunkSize
high := (validatorChunkIndex + 1) * p.validatorChunkSize
for i := low; i < high; i++ {
validatorIndices = append(validatorIndices, primitives.ValidatorIndex(i))
}
return validatorIndices
}