mirror of
https://gitlab.com/pulsechaincom/prysm-pulse.git
synced 2025-01-15 06:28:20 +00:00
1f21e196b6
* Merge variable declaration and assignment * Use result of type assertion to simplify cases * Replace call to bytes.Compare with bytes.Equal * Drop unnecessary use of the blank identifier * Replace x.Sub(time.Now()) with time.Until(x) * Function literal can be simplified * Use a single append to concatenate two slices * Replace time.Now().Sub(x) with time.Since(x) * Omit comparison with boolean constant * Omit redundant nil check on slices * Nested if can be replaced with else-if * Function call can be replaced with helper function * Omit redundant control flow * Use plain channel send or receive * Simplify returning boolean expression * Merge branch 'origin-master' into fix-antipatterns * Merge branch 'master' into fix-antipatterns
184 lines
5.7 KiB
Go
184 lines
5.7 KiB
Go
// Package stateutil defines utility functions to compute state roots
|
|
// using advanced merkle branch caching techniques.package stateutil
|
|
package stateutil
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"sync"
|
|
|
|
"github.com/prysmaticlabs/prysm/shared/featureconfig"
|
|
"github.com/prysmaticlabs/prysm/shared/hashutil"
|
|
"github.com/prysmaticlabs/prysm/shared/htrutils"
|
|
)
|
|
|
|
var (
|
|
leavesCache = make(map[string][][32]byte, fieldCount)
|
|
layersCache = make(map[string][][][32]byte, fieldCount)
|
|
lock sync.RWMutex
|
|
)
|
|
|
|
// RootsArrayHashTreeRoot computes the Merkle root of arrays of 32-byte hashes, such as [64][32]byte
|
|
// according to the Simple Serialize specification of eth2.
|
|
func RootsArrayHashTreeRoot(vals [][]byte, length uint64, fieldName string) ([32]byte, error) {
|
|
if featureconfig.Get().EnableSSZCache {
|
|
return cachedHasher.arraysRoot(vals, length, fieldName)
|
|
}
|
|
return nocachedHasher.arraysRoot(vals, length, fieldName)
|
|
}
|
|
|
|
func (h *stateRootHasher) arraysRoot(input [][]byte, length uint64, fieldName string) ([32]byte, error) {
|
|
lock.Lock()
|
|
defer lock.Unlock()
|
|
hashFunc := hashutil.CustomSHA256Hasher()
|
|
if _, ok := layersCache[fieldName]; !ok && h.rootsCache != nil {
|
|
depth := htrutils.GetDepth(length)
|
|
layersCache[fieldName] = make([][][32]byte, depth+1)
|
|
}
|
|
|
|
leaves := make([][32]byte, length)
|
|
for i, chunk := range input {
|
|
copy(leaves[i][:], chunk)
|
|
}
|
|
bytesProcessed := 0
|
|
changedIndices := make([]int, 0)
|
|
prevLeaves, ok := leavesCache[fieldName]
|
|
if len(prevLeaves) == 0 || h.rootsCache == nil {
|
|
prevLeaves = leaves
|
|
}
|
|
|
|
for i := 0; i < len(leaves); i++ {
|
|
// We check if any items changed since the roots were last recomputed.
|
|
notEqual := leaves[i] != prevLeaves[i]
|
|
if ok && h.rootsCache != nil && notEqual {
|
|
changedIndices = append(changedIndices, i)
|
|
}
|
|
bytesProcessed += 32
|
|
}
|
|
if len(changedIndices) > 0 && h.rootsCache != nil {
|
|
var rt [32]byte
|
|
var err error
|
|
// If indices did change since last computation, we only recompute
|
|
// the modified branches in the cached Merkle tree for this state field.
|
|
chunks := leaves
|
|
|
|
// We need to ensure we recompute indices of the Merkle tree which
|
|
// changed in-between calls to this function. This check adds an offset
|
|
// to the recomputed indices to ensure we do so evenly.
|
|
maxChangedIndex := changedIndices[len(changedIndices)-1]
|
|
if maxChangedIndex+2 == len(chunks) && maxChangedIndex%2 != 0 {
|
|
changedIndices = append(changedIndices, maxChangedIndex+1)
|
|
}
|
|
for i := 0; i < len(changedIndices); i++ {
|
|
rt, err = recomputeRoot(changedIndices[i], chunks, length, fieldName, hashFunc)
|
|
if err != nil {
|
|
return [32]byte{}, err
|
|
}
|
|
}
|
|
leavesCache[fieldName] = chunks
|
|
return rt, nil
|
|
}
|
|
|
|
res := h.merkleizeWithCache(leaves, length, fieldName, hashFunc)
|
|
if h.rootsCache != nil {
|
|
leavesCache[fieldName] = leaves
|
|
}
|
|
return res, nil
|
|
}
|
|
|
|
func (h *stateRootHasher) merkleizeWithCache(leaves [][32]byte, length uint64,
|
|
fieldName string, hasher func([]byte) [32]byte) [32]byte {
|
|
if len(leaves) == 1 {
|
|
return leaves[0]
|
|
}
|
|
hashLayer := leaves
|
|
layers := make([][][32]byte, htrutils.GetDepth(length)+1)
|
|
if items, ok := layersCache[fieldName]; ok && h.rootsCache != nil {
|
|
if len(items[0]) == len(leaves) {
|
|
layers = items
|
|
}
|
|
}
|
|
layers[0] = hashLayer
|
|
layers, hashLayer = merkleizeTrieLeaves(layers, hashLayer, hasher)
|
|
root := hashLayer[0]
|
|
if h.rootsCache != nil {
|
|
layersCache[fieldName] = layers
|
|
}
|
|
return root
|
|
}
|
|
|
|
func merkleizeTrieLeaves(layers [][][32]byte, hashLayer [][32]byte,
|
|
hasher func([]byte) [32]byte) ([][][32]byte, [][32]byte) {
|
|
// We keep track of the hash layers of a Merkle trie until we reach
|
|
// the top layer of length 1, which contains the single root element.
|
|
// [Root] -> Top layer has length 1.
|
|
// [E] [F] -> This layer has length 2.
|
|
// [A] [B] [C] [D] -> The bottom layer has length 4 (needs to be a power of two).
|
|
i := 1
|
|
chunkBuffer := bytes.NewBuffer([]byte{})
|
|
chunkBuffer.Grow(64)
|
|
for len(hashLayer) > 1 && i < len(layers) {
|
|
layer := make([][32]byte, len(hashLayer)/2)
|
|
for j := 0; j < len(hashLayer); j += 2 {
|
|
chunkBuffer.Write(hashLayer[j][:])
|
|
chunkBuffer.Write(hashLayer[j+1][:])
|
|
hashedChunk := hasher(chunkBuffer.Bytes())
|
|
layer[j/2] = hashedChunk
|
|
chunkBuffer.Reset()
|
|
}
|
|
hashLayer = layer
|
|
layers[i] = hashLayer
|
|
i++
|
|
}
|
|
return layers, hashLayer
|
|
}
|
|
|
|
func recomputeRoot(idx int, chunks [][32]byte, length uint64,
|
|
fieldName string, hasher func([]byte) [32]byte) ([32]byte, error) {
|
|
items, ok := layersCache[fieldName]
|
|
if !ok {
|
|
return [32]byte{}, errors.New("could not recompute root as there was no cache found")
|
|
}
|
|
if items == nil {
|
|
return [32]byte{}, errors.New("could not recompute root as there were no items found in the layers cache")
|
|
}
|
|
layers := items
|
|
root := chunks[idx]
|
|
layers[0] = chunks
|
|
// The merkle tree structure looks as follows:
|
|
// [[r1, r2, r3, r4], [parent1, parent2], [root]]
|
|
// Using information about the index which changed, idx, we recompute
|
|
// only its branch up the tree.
|
|
currentIndex := idx
|
|
for i := 0; i < len(layers)-1; i++ {
|
|
isLeft := currentIndex%2 == 0
|
|
neighborIdx := currentIndex ^ 1
|
|
|
|
neighbor := [32]byte{}
|
|
if layers[i] != nil && len(layers[i]) != 0 && neighborIdx < len(layers[i]) {
|
|
neighbor = layers[i][neighborIdx]
|
|
}
|
|
if isLeft {
|
|
parentHash := hasher(append(root[:], neighbor[:]...))
|
|
root = parentHash
|
|
} else {
|
|
parentHash := hasher(append(neighbor[:], root[:]...))
|
|
root = parentHash
|
|
}
|
|
parentIdx := currentIndex / 2
|
|
// Update the cached layers at the parent index.
|
|
if len(layers[i+1]) == 0 {
|
|
layers[i+1] = append(layers[i+1], root)
|
|
} else {
|
|
layers[i+1][parentIdx] = root
|
|
}
|
|
currentIndex = parentIdx
|
|
}
|
|
layersCache[fieldName] = layers
|
|
// If there is only a single leaf, we return it (the identity element).
|
|
if len(layers[0]) == 1 {
|
|
return layers[0][0], nil
|
|
}
|
|
return root, nil
|
|
}
|