prysm-pulse/beacon-chain/blockchain/service.go
Nishant Das 9db1002d87
Updating Genesis Block to Spec (#1172)
* Updating to spec

* addressing review comments
2018-12-25 14:47:07 +08:00

380 lines
12 KiB
Go

// Package blockchain defines the life-cycle and status of the beacon chain.
package blockchain
import (
"bytes"
"context"
"errors"
"fmt"
"time"
"github.com/ethereum/go-ethereum/common"
gethTypes "github.com/ethereum/go-ethereum/core/types"
b "github.com/prysmaticlabs/prysm/beacon-chain/core/blocks"
"github.com/prysmaticlabs/prysm/beacon-chain/core/state"
"github.com/prysmaticlabs/prysm/beacon-chain/db"
"github.com/prysmaticlabs/prysm/beacon-chain/powchain"
pb "github.com/prysmaticlabs/prysm/proto/beacon/p2p/v1"
"github.com/prysmaticlabs/prysm/shared/event"
"github.com/prysmaticlabs/prysm/shared/params"
"github.com/sirupsen/logrus"
)
var log = logrus.WithField("prefix", "blockchain")
// ChainService represents a service that handles the internal
// logic of managing the full PoS beacon chain.
type ChainService struct {
ctx context.Context
cancel context.CancelFunc
beaconDB *db.BeaconDB
web3Service *powchain.Web3Service
incomingBlockFeed *event.Feed
incomingBlockChan chan *pb.BeaconBlock
processedBlockChan chan *pb.BeaconBlock
canonicalBlockFeed *event.Feed
canonicalStateFeed *event.Feed
genesisTime time.Time
unProcessedBlocks map[uint64]*pb.BeaconBlock
unfinalizedBlocks map[[32]byte]*pb.BeaconState
enablePOWChain bool
}
// Config options for the service.
type Config struct {
BeaconBlockBuf int
IncomingBlockBuf int
Web3Service *powchain.Web3Service
BeaconDB *db.BeaconDB
DevMode bool
EnablePOWChain bool
}
// NewChainService instantiates a new service instance that will
// be registered into a running beacon node.
func NewChainService(ctx context.Context, cfg *Config) (*ChainService, error) {
ctx, cancel := context.WithCancel(ctx)
return &ChainService{
ctx: ctx,
cancel: cancel,
beaconDB: cfg.BeaconDB,
web3Service: cfg.Web3Service,
incomingBlockChan: make(chan *pb.BeaconBlock, cfg.IncomingBlockBuf),
processedBlockChan: make(chan *pb.BeaconBlock),
incomingBlockFeed: new(event.Feed),
canonicalBlockFeed: new(event.Feed),
canonicalStateFeed: new(event.Feed),
unProcessedBlocks: make(map[uint64]*pb.BeaconBlock),
unfinalizedBlocks: make(map[[32]byte]*pb.BeaconState),
enablePOWChain: cfg.EnablePOWChain,
}, nil
}
// Start a blockchain service's main event loop.
func (c *ChainService) Start() {
log.Info("Starting service")
var err error
c.genesisTime, err = c.beaconDB.GenesisTime()
if err != nil {
log.Fatalf("Unable to retrieve genesis time, therefore blockchain service cannot be started %v", err)
return
}
// TODO(#675): Initialize unfinalizedBlocks map from disk in case this
// is a beacon node restarting.
go c.updateHead(c.processedBlockChan)
go c.blockProcessing(c.processedBlockChan)
}
// Stop the blockchain service's main event loop and associated goroutines.
func (c *ChainService) Stop() error {
defer c.cancel()
log.Info("Stopping service")
return nil
}
// IncomingBlockFeed returns a feed that any service can send incoming p2p blocks into.
// The chain service will subscribe to this feed in order to process incoming blocks.
func (c *ChainService) IncomingBlockFeed() *event.Feed {
return c.incomingBlockFeed
}
// CanonicalBlockFeed returns a channel that is written to
// whenever a new block is determined to be canonical in the chain.
func (c *ChainService) CanonicalBlockFeed() *event.Feed {
return c.canonicalBlockFeed
}
// CanonicalStateFeed returns a feed that is written to
// whenever a new state is determined to be canonical in the chain.
func (c *ChainService) CanonicalStateFeed() *event.Feed {
return c.canonicalStateFeed
}
// doesPoWBlockExist checks if the referenced PoW block exists.
func (c *ChainService) doesPoWBlockExist(hash [32]byte) bool {
powBlock, err := c.web3Service.Client().BlockByHash(c.ctx, hash)
if err != nil {
log.Debugf("fetching PoW block corresponding to mainchain reference failed: %v", err)
return false
}
return powBlock != nil
}
// updateHead applies the fork choice rule to the beacon chain
// at the start of each new slot interval. The function looks
// at an in-memory slice of block hashes pending processing and
// selects the best block according to the in-protocol fork choice
// rule as canonical. This block is then persisted to storage.
func (c *ChainService) updateHead(processedBlock <-chan *pb.BeaconBlock) {
for {
select {
case <-c.ctx.Done():
return
case block := <-processedBlock:
if block == nil {
continue
}
h, err := b.Hash(block)
if err != nil {
log.Errorf("Could not hash incoming block: %v", err)
continue
}
log.Info("Updating chain head...")
currentHead, err := c.beaconDB.GetChainHead()
if err != nil {
log.Errorf("Could not get current chain head: %v", err)
continue
}
currentState, err := c.beaconDB.GetState()
if err != nil {
log.Errorf("Could not get current beacon state: %v", err)
continue
}
blockState := c.unfinalizedBlocks[h]
var headUpdated bool
newHead := currentHead
// If both blocks have the same crystallized state root, we favor one which has
// the higher slot.
if bytes.Equal(currentHead.GetStateRootHash32(), block.GetStateRootHash32()) {
if block.GetSlot() > currentHead.GetSlot() {
newHead = block
headUpdated = true
}
// 2a. Pick the block with the higher last_finalized_slot.
// 2b. If same, pick the block with the higher last_justified_slot.
} else if blockState.GetFinalizedSlot() > currentState.GetFinalizedSlot() {
newHead = block
headUpdated = true
} else if blockState.GetFinalizedSlot() == currentState.GetFinalizedSlot() {
if blockState.GetJustifiedSlot() > currentState.GetJustifiedSlot() {
newHead = block
headUpdated = true
} else if blockState.GetJustifiedSlot() == currentState.GetJustifiedSlot() {
if block.GetSlot() > currentHead.GetSlot() {
newHead = block
headUpdated = true
}
}
}
// If no new head was found, we do not update the chain.
if !headUpdated {
log.Info("Chain head not updated")
continue
}
// TODO(#674): Handle chain reorgs.
newState := blockState
if err := c.beaconDB.UpdateChainHead(newHead, newState); err != nil {
log.Errorf("Failed to update chain: %v", err)
continue
}
log.WithField("blockHash", fmt.Sprintf("0x%x", h)).Info("Chain head block and state updated")
// We fire events that notify listeners of a new block in
// the case of a state transition. This is useful for the beacon node's gRPC
// server to stream these events to beacon clients.
// When the transition is a cycle transition, we stream the state containing the new validator
// assignments to clients.
if block.GetSlot()%params.BeaconConfig().CycleLength == 0 {
c.canonicalStateFeed.Send(newState)
}
c.canonicalBlockFeed.Send(newHead)
}
}
}
func (c *ChainService) blockProcessing(processedBlock chan<- *pb.BeaconBlock) {
subBlock := c.incomingBlockFeed.Subscribe(c.incomingBlockChan)
defer subBlock.Unsubscribe()
for {
select {
case <-c.ctx.Done():
log.Debug("Chain service context closed, exiting goroutine")
return
// Listen for a newly received incoming block from the feed. Blocks
// can be received either from the sync service, the RPC service,
// or via p2p.
case block := <-c.incomingBlockChan:
// Before sending the blocks for processing we check to see if the blocks
// are valid to continue being processed. If the slot number in the block
// has already been processed by the beacon node, we throw it away. If the
// slot number is too high to be processed in the current slot, we store
// it in a cache.
beaconState, err := c.beaconDB.GetState()
if err != nil {
log.Errorf("Unable to retrieve beacon state %v", err)
continue
}
currentSlot := beaconState.GetSlot()
if currentSlot+1 < block.GetSlot() {
c.unProcessedBlocks[block.GetSlot()] = block
continue
}
if currentSlot+1 == block.GetSlot() {
if err := c.receiveBlock(block); err != nil {
log.Error(err)
processedBlock <- nil
continue
}
// Push the block to trigger the fork choice rule.
processedBlock <- block
} else {
log.Debugf(
"Block slot number is lower than the current slot in the beacon state %d",
block.GetSlot())
c.sendAndDeleteCachedBlocks(currentSlot)
}
}
}
}
// receiveBlock is a function that defines the operations that are preformed on
// any block that is received from p2p layer or rpc. It checks the block to see
// if it passes the pre-processing conditions, if it does then the per slot
// state transition function is carried out on the block.
// spec:
// def process_block(block):
// if not block_pre_processing_conditions(block):
// return False
//
// # process skipped slots
//
// while (state.slot < block.slot - 1):
// state = slot_state_transition(state, block=None)
//
// # process slot with block
// state = slot_state_transition(state, block)
//
// # check state root
// if block.state_root == hash(state):
// return state
// else:
// return False # or throw or whatever
//
func (c *ChainService) receiveBlock(block *pb.BeaconBlock) error {
blockhash, err := b.Hash(block)
if err != nil {
return fmt.Errorf("could not hash incoming block: %v", err)
}
beaconState, err := c.beaconDB.GetState()
if err != nil {
return fmt.Errorf("failed to get beacon state: %v", err)
}
if block.GetSlot() == 0 {
return errors.New("cannot process a genesis block: received block with slot 0")
}
// Save blocks with higher slot numbers in cache.
if err := c.isBlockReadyForProcessing(block); err != nil {
log.Debugf("block with hash %#x is not ready for processing: %v", blockhash, err)
return nil
}
log.WithField("slotNumber", block.GetSlot()).Info("Executing state transition")
// Check for skipped slots and update the corresponding proposers
// randao layer.
for beaconState.GetSlot() < block.GetSlot()-1 {
beaconState, err = state.ExecuteStateTransition(beaconState, nil)
if err != nil {
return fmt.Errorf("unable to execute state transition %v", err)
}
}
beaconState, err = state.ExecuteStateTransition(beaconState, block)
if err != nil {
return errors.New("unable to execute state transition")
}
if state.IsValidatorSetChange(beaconState, block.GetSlot()) {
log.WithField("slotNumber", block.GetSlot()).Info("Validator set rotation occurred")
}
// TODO(#1074): Verify block.state_root == hash_tree_root(state)
// if there exists a block for the slot being processed.
if err := c.beaconDB.SaveBlock(block); err != nil {
return fmt.Errorf("failed to save block: %v", err)
}
if err := c.beaconDB.SaveUnfinalizedBlockState(beaconState); err != nil {
return fmt.Errorf("error persisting unfinalized block's state: %v", err)
}
log.WithField("hash", fmt.Sprintf("%#x", blockhash)).Debug("Processed beacon block")
// We keep a map of unfinalized blocks in memory along with their state
// pair to apply the fork choice rule.
c.unfinalizedBlocks[blockhash] = beaconState
return nil
}
func (c *ChainService) isBlockReadyForProcessing(block *pb.BeaconBlock) error {
beaconState, err := c.beaconDB.GetState()
if err != nil {
return fmt.Errorf("failed to get beacon state: %v", err)
}
var powBlockFetcher func(ctx context.Context, hash common.Hash) (*gethTypes.Block, error)
if c.enablePOWChain {
powBlockFetcher = c.web3Service.Client().BlockByHash
}
if err := b.IsValidBlock(c.ctx, beaconState, block, c.enablePOWChain,
c.beaconDB.HasBlock, powBlockFetcher, c.genesisTime); err != nil {
return fmt.Errorf("block does not fulfill pre-processing conditions %v", err)
}
return nil
}
// sendAndDeleteCachedBlocks checks if there is any block saved in the cache with a
// slot number equivalent to the current slot. If there is then the block is
// sent to the incoming block channel and deleted from the cache.
func (c *ChainService) sendAndDeleteCachedBlocks(currentSlot uint64) {
if block, ok := c.unProcessedBlocks[currentSlot+1]; ok {
if err := c.isBlockReadyForProcessing(block); err == nil {
c.incomingBlockChan <- block
delete(c.unProcessedBlocks, currentSlot)
}
}
}