prysm-pulse/beacon-chain/rpc/service.go

205 lines
6.8 KiB
Go

// Package rpc defines the services that the beacon-chain uses to communicate via gRPC.
package rpc
import (
"context"
"fmt"
"net"
"github.com/ethereum/go-ethereum/event"
"github.com/golang/protobuf/ptypes/empty"
"github.com/prysmaticlabs/prysm/beacon-chain/types"
pbp2p "github.com/prysmaticlabs/prysm/proto/beacon/p2p/v1"
pb "github.com/prysmaticlabs/prysm/proto/beacon/rpc/v1"
"github.com/sirupsen/logrus"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials"
)
var log = logrus.WithField("prefix", "rpc")
type chainService interface {
IncomingBlockFeed() *event.Feed
IncomingAttestationFeed() *event.Feed
}
// Service defining an RPC server for a beacon node.
type Service struct {
ctx context.Context
cancel context.CancelFunc
announcer types.CanonicalEventAnnouncer
chainService chainService
port string
listener net.Listener
withCert string
withKey string
grpcServer *grpc.Server
canonicalBlockChan chan *types.Block
canonicalStateChan chan *types.CrystallizedState
}
// Config options for the beacon node RPC server.
type Config struct {
Port string
CertFlag string
KeyFlag string
SubscriptionBuf int
Announcer types.CanonicalEventAnnouncer
ChainService chainService
}
// NewRPCService creates a new instance of a struct implementing the BeaconServiceServer
// interface.
func NewRPCService(ctx context.Context, cfg *Config) *Service {
ctx, cancel := context.WithCancel(ctx)
return &Service{
ctx: ctx,
cancel: cancel,
announcer: cfg.Announcer,
chainService: cfg.ChainService,
port: cfg.Port,
withCert: cfg.CertFlag,
withKey: cfg.KeyFlag,
canonicalBlockChan: make(chan *types.Block, cfg.SubscriptionBuf),
canonicalStateChan: make(chan *types.CrystallizedState, cfg.SubscriptionBuf),
}
}
// Start the gRPC server.
func (s *Service) Start() {
log.Info("Starting service")
lis, err := net.Listen("tcp", fmt.Sprintf(":%s", s.port))
if err != nil {
log.Errorf("Could not listen to port :%s: %v", s.port, err)
return
}
s.listener = lis
log.Infof("RPC server listening on port :%s", s.port)
if s.withCert != "" && s.withKey != "" {
creds, err := credentials.NewServerTLSFromFile(s.withCert, s.withKey)
if err != nil {
log.Errorf("could not load TLS keys: %s", err)
}
s.grpcServer = grpc.NewServer(grpc.Creds(creds))
} else {
log.Warn("You are using an insecure gRPC connection! Please provide a certificate and key to use a secure connection")
s.grpcServer = grpc.NewServer()
}
pb.RegisterBeaconServiceServer(s.grpcServer, s)
go func() {
err = s.grpcServer.Serve(lis)
if err != nil {
log.Errorf("Could not serve gRPC: %v", err)
}
}()
}
// Stop the service.
func (s *Service) Stop() error {
log.Info("Stopping service")
s.cancel()
if s.listener != nil {
s.grpcServer.GracefulStop()
log.Debug("Initiated graceful stop of gRPC server")
}
return nil
}
// FetchShuffledValidatorIndices retrieves the shuffled validator indices, cutoffs, and
// assigned attestation slots at a given crystallized state hash.
// This function can be called by validators to fetch a historical list of shuffled
// validators ata point in time corresponding to a certain crystallized state.
func (s *Service) FetchShuffledValidatorIndices(ctx context.Context, req *pb.ShuffleRequest) (*pb.ShuffleResponse, error) {
var shuffledIndices []uint64
// Simulator always pushes out a validator list of length 100. By having index 0
// as the last index, the validator will always be a proposer in the validator code.
// TODO: Implement the real method by fetching the crystallized state in the request
// from persistent disk storage and shuffling the indices appropriately.
for i := 99; i >= 0; i-- {
shuffledIndices = append(shuffledIndices, uint64(i))
}
// For now, this will cause validators to always pick the validator as a proposer.
shuffleRes := &pb.ShuffleResponse{
ShuffledValidatorIndices: shuffledIndices,
}
return shuffleRes, nil
}
// ProposeBlock is called by a proposer in a sharding validator and a full beacon node
// sends the request into a beacon block that can then be included in a canonical chain.
func (s *Service) ProposeBlock(ctx context.Context, req *pb.ProposeRequest) (*pb.ProposeResponse, error) {
// TODO: handle fields such as attestation bitmask, aggregate sig, and randao reveal.
data := &pbp2p.BeaconBlock{
SlotNumber: req.GetSlotNumber(),
ParentHash: req.GetParentHash(),
Timestamp: req.GetTimestamp(),
}
block := types.NewBlock(data)
h, err := block.Hash()
if err != nil {
return nil, fmt.Errorf("could not hash block: %v", err)
}
// We relay the received block from the proposer to the chain service for processing.
s.chainService.IncomingBlockFeed().Send(block)
return &pb.ProposeResponse{BlockHash: h[:]}, nil
}
// AttestHead is a function called by an attester in a sharding validator to vote
// on a block.
func (s *Service) AttestHead(ctx context.Context, req *pb.AttestRequest) (*pb.AttestResponse, error) {
attestation := types.NewAttestation(req.Attestation)
h, err := attestation.Hash()
if err != nil {
return nil, fmt.Errorf("could not hash attestation: %v", err)
}
// Relays the attestation to chain service.
s.chainService.IncomingAttestationFeed().Send(attestation)
return &pb.AttestResponse{AttestationHash: h[:]}, nil
}
// LatestBeaconBlock streams the latest beacon chain data.
func (s *Service) LatestBeaconBlock(req *empty.Empty, stream pb.BeaconService_LatestBeaconBlockServer) error {
// Right now, this streams every announced block received via p2p. It should only stream
// finalized blocks that are canonical in the beacon node after applying the fork choice
// rule.
sub := s.announcer.CanonicalBlockFeed().Subscribe(s.canonicalBlockChan)
defer sub.Unsubscribe()
for {
select {
case block := <-s.canonicalBlockChan:
log.Info("Sending latest canonical block to RPC clients")
if err := stream.Send(block.Proto()); err != nil {
return err
}
case <-s.ctx.Done():
log.Debug("RPC context closed, exiting goroutine")
return nil
}
}
}
// LatestCrystallizedState streams the latest beacon crystallized state.
func (s *Service) LatestCrystallizedState(req *empty.Empty, stream pb.BeaconService_LatestCrystallizedStateServer) error {
// Right now, this streams every newly created crystallized state but should only
// stream canonical states.
sub := s.announcer.CanonicalCrystallizedStateFeed().Subscribe(s.canonicalStateChan)
defer sub.Unsubscribe()
for {
select {
case state := <-s.canonicalStateChan:
log.Info("Sending crystallized state to RPC clients")
if err := stream.Send(state.Proto()); err != nil {
return err
}
case <-s.ctx.Done():
log.Debug("RPC context closed, exiting goroutine")
return nil
}
}
}