prysm-pulse/beacon-chain/forkchoice/protoarray/store.go
Potuz 57a323f083
Forkchoice featureflag (#10299)
* Compiling main beacon-chain binary

* Add feature flag

* passing protoarray tests

* passing nodetree tests

* passing blockchain package tests

* passing rpc tests

* go fmt

* re-export forkchoice store from blockchain package

* remove duplicated import

* remove unused var

* add nodetree rpc method

* remove slot from IsOptimisticForRoot

* release lock in IsOptimistic

* change package name

* Revert "change package name"

This reverts commit 679112f9ef795922c631e7823dbdfb3746838f3c.

* rename package

* Update doc

* Fix span names

* Terence + Raul review

* remove go:build flags

* add errors dep

* spec tests

* fix call to IsOptimisticForRoot

* fix test

* Fix conflict

* change name of function

* remove ctx from store.head

Co-authored-by: terence tsao <terence@prysmaticlabs.com>
2022-03-09 03:05:51 +00:00

778 lines
25 KiB
Go

package protoarray
import (
"bytes"
"context"
"fmt"
"github.com/pkg/errors"
types "github.com/prysmaticlabs/eth2-types"
fieldparams "github.com/prysmaticlabs/prysm/config/fieldparams"
"github.com/prysmaticlabs/prysm/config/params"
pbrpc "github.com/prysmaticlabs/prysm/proto/prysm/v1alpha1"
"go.opencensus.io/trace"
)
// This defines the minimal number of block nodes that can be in the tree
// before getting pruned upon new finalization.
const defaultPruneThreshold = 256
// This tracks the last reported head root. Used for metrics.
var lastHeadRoot [32]byte
// New initializes a new fork choice store.
func New(justifiedEpoch, finalizedEpoch types.Epoch, finalizedRoot [32]byte) *ForkChoice {
s := &Store{
justifiedEpoch: justifiedEpoch,
finalizedEpoch: finalizedEpoch,
finalizedRoot: finalizedRoot,
proposerBoostRoot: [32]byte{},
nodes: make([]*Node, 0),
nodesIndices: make(map[[32]byte]uint64),
canonicalNodes: make(map[[32]byte]bool),
pruneThreshold: defaultPruneThreshold,
}
b := make([]uint64, 0)
v := make([]Vote, 0)
st := &optimisticStore{
validatedTips: make(map[[32]byte]types.Slot),
}
return &ForkChoice{store: s, balances: b, votes: v, syncedTips: st}
}
// SetSyncedTips sets the synced and validated tips from the passed map
func (f *ForkChoice) SetSyncedTips(tips map[[32]byte]types.Slot) error {
if len(tips) == 0 {
return errInvalidSyncedTips
}
newTips := make(map[[32]byte]types.Slot, len(tips))
for k, v := range tips {
newTips[k] = v
}
f.syncedTips.Lock()
defer f.syncedTips.Unlock()
f.syncedTips.validatedTips = newTips
return nil
}
// SyncedTips returns the synced and validated tips from the fork choice store.
func (f *ForkChoice) SyncedTips() map[[32]byte]types.Slot {
f.syncedTips.RLock()
defer f.syncedTips.RUnlock()
m := make(map[[32]byte]types.Slot)
for k, v := range f.syncedTips.validatedTips {
m[k] = v
}
return m
}
// Head returns the head root from fork choice store.
// It firsts computes validator's balance changes then recalculates block tree from leaves to root.
func (f *ForkChoice) Head(
ctx context.Context,
justifiedEpoch types.Epoch,
justifiedRoot [32]byte,
justifiedStateBalances []uint64,
finalizedEpoch types.Epoch,
) ([32]byte, error) {
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.Head")
defer span.End()
f.votesLock.Lock()
defer f.votesLock.Unlock()
calledHeadCount.Inc()
newBalances := justifiedStateBalances
// Using the write lock here because `updateCanonicalNodes` that gets called subsequently requires a write operation.
f.store.nodesLock.Lock()
defer f.store.nodesLock.Unlock()
deltas, newVotes, err := computeDeltas(ctx, f.store.nodesIndices, f.votes, f.balances, newBalances)
if err != nil {
return [32]byte{}, errors.Wrap(err, "Could not compute deltas")
}
f.votes = newVotes
if err := f.store.applyWeightChanges(ctx, justifiedEpoch, finalizedEpoch, newBalances, deltas); err != nil {
return [32]byte{}, errors.Wrap(err, "Could not apply score changes")
}
f.balances = newBalances
return f.store.head(ctx, justifiedRoot)
}
// ProcessAttestation processes attestation for vote accounting, it iterates around validator indices
// and update their votes accordingly.
func (f *ForkChoice) ProcessAttestation(ctx context.Context, validatorIndices []uint64, blockRoot [32]byte, targetEpoch types.Epoch) {
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessAttestation")
defer span.End()
f.votesLock.Lock()
defer f.votesLock.Unlock()
for _, index := range validatorIndices {
// Validator indices will grow the vote cache.
for index >= uint64(len(f.votes)) {
f.votes = append(f.votes, Vote{currentRoot: params.BeaconConfig().ZeroHash, nextRoot: params.BeaconConfig().ZeroHash})
}
// Newly allocated vote if the root fields are untouched.
newVote := f.votes[index].nextRoot == params.BeaconConfig().ZeroHash &&
f.votes[index].currentRoot == params.BeaconConfig().ZeroHash
// Vote gets updated if it's newly allocated or high target epoch.
if newVote || targetEpoch > f.votes[index].nextEpoch {
f.votes[index].nextEpoch = targetEpoch
f.votes[index].nextRoot = blockRoot
}
}
processedAttestationCount.Inc()
}
// NodeCount returns the current number of nodes in the Store
func (f *ForkChoice) NodeCount() int {
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
return len(f.store.nodes)
}
// ProposerBoost returns the proposerBoost of the store
func (f *ForkChoice) ProposerBoost() [fieldparams.RootLength]byte {
return f.store.proposerBoost()
}
// ProcessBlock processes a new block by inserting it to the fork choice store.
func (f *ForkChoice) ProcessBlock(
ctx context.Context,
slot types.Slot,
blockRoot, parentRoot [32]byte,
justifiedEpoch, finalizedEpoch types.Epoch, optimistic bool) error {
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessBlock")
defer span.End()
if err := f.store.insert(ctx, slot, blockRoot, parentRoot, justifiedEpoch, finalizedEpoch); err != nil {
return err
}
if !optimistic {
return f.SetOptimisticToValid(ctx, blockRoot)
}
return nil
}
// Prune prunes the fork choice store with the new finalized root. The store is only pruned if the input
// root is different than the current store finalized root, and the number of the store has met prune threshold.
func (f *ForkChoice) Prune(ctx context.Context, finalizedRoot [32]byte) error {
return f.store.prune(ctx, finalizedRoot, f.syncedTips)
}
// HasNode returns true if the node exists in fork choice store,
// false else wise.
func (f *ForkChoice) HasNode(root [32]byte) bool {
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
_, ok := f.store.nodesIndices[root]
return ok
}
// HasParent returns true if the node parent exists in fork choice store,
// false else wise.
func (f *ForkChoice) HasParent(root [32]byte) bool {
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
i, ok := f.store.nodesIndices[root]
if !ok || i >= uint64(len(f.store.nodes)) {
return false
}
return f.store.nodes[i].parent != NonExistentNode
}
// IsCanonical returns true if the given root is part of the canonical chain.
func (f *ForkChoice) IsCanonical(root [32]byte) bool {
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
return f.store.canonicalNodes[root]
}
// AncestorRoot returns the ancestor root of input block root at a given slot.
func (f *ForkChoice) AncestorRoot(ctx context.Context, root [32]byte, slot types.Slot) ([]byte, error) {
ctx, span := trace.StartSpan(ctx, "protoArray.AncestorRoot")
defer span.End()
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
i, ok := f.store.nodesIndices[root]
if !ok {
return nil, errors.New("node does not exist")
}
if i >= uint64(len(f.store.nodes)) {
return nil, errors.New("node index out of range")
}
for f.store.nodes[i].slot > slot {
if ctx.Err() != nil {
return nil, ctx.Err()
}
i = f.store.nodes[i].parent
if i >= uint64(len(f.store.nodes)) {
return nil, errors.New("node index out of range")
}
}
return f.store.nodes[i].root[:], nil
}
// PruneThreshold of fork choice store.
func (s *Store) PruneThreshold() uint64 {
return s.pruneThreshold
}
// JustifiedEpoch of fork choice store.
func (f *ForkChoice) JustifiedEpoch() types.Epoch {
return f.store.justifiedEpoch
}
// FinalizedEpoch of fork choice store.
func (f *ForkChoice) FinalizedEpoch() types.Epoch {
return f.store.finalizedEpoch
}
// proposerBoost of fork choice store.
func (s *Store) proposerBoost() [fieldparams.RootLength]byte {
s.proposerBoostLock.RLock()
defer s.proposerBoostLock.RUnlock()
return s.proposerBoostRoot
}
// head starts from justified root and then follows the best descendant links
// to find the best block for head.
func (s *Store) head(ctx context.Context, justifiedRoot [32]byte) ([32]byte, error) {
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.head")
defer span.End()
// Justified index has to be valid in node indices map, and can not be out of bound.
justifiedIndex, ok := s.nodesIndices[justifiedRoot]
if !ok {
return [32]byte{}, errUnknownJustifiedRoot
}
if justifiedIndex >= uint64(len(s.nodes)) {
return [32]byte{}, errInvalidJustifiedIndex
}
justifiedNode := s.nodes[justifiedIndex]
bestDescendantIndex := justifiedNode.bestDescendant
// If the justified node doesn't have a best descendant,
// the best node is itself.
if bestDescendantIndex == NonExistentNode {
bestDescendantIndex = justifiedIndex
}
if bestDescendantIndex >= uint64(len(s.nodes)) {
return [32]byte{}, errInvalidBestDescendantIndex
}
bestNode := s.nodes[bestDescendantIndex]
if !s.viableForHead(bestNode) {
return [32]byte{}, fmt.Errorf("head at slot %d with weight %d is not eligible, finalizedEpoch %d != %d, justifiedEpoch %d != %d",
bestNode.slot, bestNode.weight/10e9, bestNode.finalizedEpoch, s.finalizedEpoch, bestNode.justifiedEpoch, s.justifiedEpoch)
}
// Update metrics.
if bestNode.root != lastHeadRoot {
headChangesCount.Inc()
headSlotNumber.Set(float64(bestNode.slot))
lastHeadRoot = bestNode.root
}
// Update canonical mapping given the head root.
if err := s.updateCanonicalNodes(ctx, bestNode.root); err != nil {
return [32]byte{}, err
}
return bestNode.root, nil
}
// updateCanonicalNodes updates the canonical nodes mapping given the input block root.
func (s *Store) updateCanonicalNodes(ctx context.Context, root [32]byte) error {
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.updateCanonicalNodes")
defer span.End()
// Set the input node to canonical.
i := s.nodesIndices[root]
var newCanonicalRoots [][32]byte
var n *Node
for i != NonExistentNode {
if ctx.Err() != nil {
return ctx.Err()
}
// Get the parent node, if the node is already in canonical mapping,
// we can be sure rest of the ancestors are canonical. Exit early.
n = s.nodes[i]
if s.canonicalNodes[n.root] {
break
}
// Set parent node to canonical. Repeat until parent node index is undefined.
newCanonicalRoots = append(newCanonicalRoots, n.root)
i = n.parent
}
// i is either NonExistentNode or has the index of the last canonical
// node before the last head update.
if i == NonExistentNode {
s.canonicalNodes = make(map[[fieldparams.RootLength]byte]bool)
} else {
for j := i + 1; j < uint64(len(s.nodes)); j++ {
delete(s.canonicalNodes, s.nodes[j].root)
}
}
for _, canonicalRoot := range newCanonicalRoots {
s.canonicalNodes[canonicalRoot] = true
}
return nil
}
// insert registers a new block node to the fork choice store's node list.
// It then updates the new node's parent with best child and descendant node.
func (s *Store) insert(ctx context.Context,
slot types.Slot,
root, parent [32]byte,
justifiedEpoch, finalizedEpoch types.Epoch) error {
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert")
defer span.End()
s.nodesLock.Lock()
defer s.nodesLock.Unlock()
// Return if the block has been inserted into Store before.
if _, ok := s.nodesIndices[root]; ok {
return nil
}
index := uint64(len(s.nodes))
parentIndex, ok := s.nodesIndices[parent]
// Mark genesis block's parent as non-existent.
if !ok {
parentIndex = NonExistentNode
}
n := &Node{
slot: slot,
root: root,
parent: parentIndex,
justifiedEpoch: justifiedEpoch,
finalizedEpoch: finalizedEpoch,
bestChild: NonExistentNode,
bestDescendant: NonExistentNode,
weight: 0,
}
s.nodesIndices[root] = index
s.nodes = append(s.nodes, n)
// Update parent with the best child and descendant only if it's available.
if n.parent != NonExistentNode {
if err := s.updateBestChildAndDescendant(parentIndex, index); err != nil {
return err
}
}
// Update metrics.
processedBlockCount.Inc()
nodeCount.Set(float64(len(s.nodes)))
return nil
}
// applyWeightChanges iterates backwards through the nodes in store. It checks all nodes parent
// and its best child. For each node, it updates the weight with input delta and
// back propagate the nodes' delta to its parents' delta. After scoring changes,
// the best child is then updated along with the best descendant.
func (s *Store) applyWeightChanges(
ctx context.Context, justifiedEpoch, finalizedEpoch types.Epoch, newBalances []uint64, delta []int,
) error {
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges")
defer span.End()
// The length of the nodes can not be different than length of the delta.
if len(s.nodes) != len(delta) {
return errInvalidDeltaLength
}
// Update the justified / finalized epochs in store if necessary.
if s.justifiedEpoch != justifiedEpoch || s.finalizedEpoch != finalizedEpoch {
s.justifiedEpoch = justifiedEpoch
s.finalizedEpoch = finalizedEpoch
}
// Proposer score defaults to 0.
proposerScore := uint64(0)
// Iterate backwards through all index to node in store.
var err error
for i := len(s.nodes) - 1; i >= 0; i-- {
n := s.nodes[i]
// There is no need to adjust the balances or manage parent of the zero hash, it
// is an alias to the genesis block.
if n.root == params.BeaconConfig().ZeroHash {
continue
}
nodeDelta := delta[i]
// If we have a node where the proposer boost was previously applied,
// we then decrease the delta by the required score amount.
s.proposerBoostLock.Lock()
if s.previousProposerBoostRoot != params.BeaconConfig().ZeroHash && s.previousProposerBoostRoot == n.root {
nodeDelta -= int(s.previousProposerBoostScore)
}
if s.proposerBoostRoot != params.BeaconConfig().ZeroHash && s.proposerBoostRoot == n.root {
proposerScore, err = computeProposerBoostScore(newBalances)
if err != nil {
s.proposerBoostLock.Unlock()
return err
}
nodeDelta = nodeDelta + int(proposerScore)
}
s.proposerBoostLock.Unlock()
// A node's weight can not be negative but the delta can be negative.
if nodeDelta < 0 {
d := uint64(-nodeDelta)
if n.weight < d {
n.weight = 0
} else {
n.weight -= d
}
} else {
n.weight += uint64(nodeDelta)
}
// Update parent's best child and descendant if the node has a known parent.
if n.parent != NonExistentNode {
// Protection against node parent index out of bound. This should not happen.
if int(n.parent) >= len(delta) {
return errInvalidParentDelta
}
// Back propagate the nodes' delta to its parent.
delta[n.parent] += nodeDelta
}
}
// Set the previous boosted root and score.
s.proposerBoostLock.Lock()
s.previousProposerBoostRoot = s.proposerBoostRoot
s.previousProposerBoostScore = proposerScore
s.proposerBoostLock.Unlock()
for i := len(s.nodes) - 1; i >= 0; i-- {
n := s.nodes[i]
if n.parent != NonExistentNode {
if int(n.parent) >= len(delta) {
return errInvalidParentDelta
}
if err := s.updateBestChildAndDescendant(n.parent, uint64(i)); err != nil {
return err
}
}
}
return nil
}
// updateBestChildAndDescendant updates parent node's best child and descendant.
// It looks at input parent node and input child node and potentially modifies parent's best
// child and best descendant indices.
// There are four outcomes:
// 1.) The child is already the best child, but it's now invalid due to a FFG change and should be removed.
// 2.) The child is already the best child and the parent is updated with the new best descendant.
// 3.) The child is not the best child but becomes the best child.
// 4.) The child is not the best child and does not become the best child.
func (s *Store) updateBestChildAndDescendant(parentIndex, childIndex uint64) error {
// Protection against parent index out of bound, this should not happen.
if parentIndex >= uint64(len(s.nodes)) {
return errInvalidNodeIndex
}
parent := s.nodes[parentIndex]
// Protection against child index out of bound, again this should not happen.
if childIndex >= uint64(len(s.nodes)) {
return errInvalidNodeIndex
}
child := s.nodes[childIndex]
// Is the child viable to become head? Based on justification and finalization rules.
childLeadsToViableHead, err := s.leadsToViableHead(child)
if err != nil {
return err
}
// Define 3 variables for the 3 outcomes mentioned above. This is to
// set `parent.bestChild` and `parent.bestDescendant` to. These
// aliases are to assist readability.
changeToNone := []uint64{NonExistentNode, NonExistentNode}
bestDescendant := child.bestDescendant
if bestDescendant == NonExistentNode {
bestDescendant = childIndex
}
changeToChild := []uint64{childIndex, bestDescendant}
noChange := []uint64{parent.bestChild, parent.bestDescendant}
var newParentChild []uint64
if parent.bestChild != NonExistentNode {
if parent.bestChild == childIndex && !childLeadsToViableHead {
// If the child is already the best child of the parent, but it's not viable for head,
// we should remove it. (Outcome 1)
newParentChild = changeToNone
} else if parent.bestChild == childIndex {
// If the child is already the best child of the parent, set it again to ensure the best
// descendant of the parent is updated. (Outcome 2)
newParentChild = changeToChild
} else {
// Protection against parent's best child going out of bound.
if parent.bestChild > uint64(len(s.nodes)) {
return errInvalidBestDescendantIndex
}
bestChild := s.nodes[parent.bestChild]
// Is current parent's best child viable to be head? Based on justification and finalization rules.
bestChildLeadsToViableHead, err := s.leadsToViableHead(bestChild)
if err != nil {
return err
}
if childLeadsToViableHead && !bestChildLeadsToViableHead {
// The child leads to a viable head, but the current parent's best child doesn't.
newParentChild = changeToChild
} else if !childLeadsToViableHead && bestChildLeadsToViableHead {
// The child doesn't lead to a viable head, the current parent's best child does.
newParentChild = noChange
} else if child.weight == bestChild.weight {
// If both are viable, compare their weights.
// Tie-breaker of equal weights by root.
if bytes.Compare(child.root[:], bestChild.root[:]) > 0 {
newParentChild = changeToChild
} else {
newParentChild = noChange
}
} else {
// Choose winner by weight.
if child.weight > bestChild.weight {
newParentChild = changeToChild
} else {
newParentChild = noChange
}
}
}
} else {
if childLeadsToViableHead {
// If parent doesn't have a best child and the child is viable.
newParentChild = changeToChild
} else {
// If parent doesn't have a best child and the child is not viable.
newParentChild = noChange
}
}
// Update parent with the outcome.
parent.bestChild = newParentChild[0]
parent.bestDescendant = newParentChild[1]
s.nodes[parentIndex] = parent
return nil
}
// prune prunes the store with the new finalized root. The tree is only
// pruned if the input finalized root are different than the one in stored and
// the number of the nodes in store has met prune threshold.
func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte, syncedTips *optimisticStore) error {
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune")
defer span.End()
s.nodesLock.Lock()
defer s.nodesLock.Unlock()
// The node would have seen finalized root or else it
// wouldn't be able to prune it.
finalizedIndex, ok := s.nodesIndices[finalizedRoot]
if !ok {
return errUnknownFinalizedRoot
}
// The number of the nodes has not met the prune threshold.
// Pruning at small numbers incurs more cost than benefit.
if finalizedIndex < s.pruneThreshold {
return nil
}
// Traverse through the node list starting from the finalized node at index 0.
// Nodes that are not branching off from the finalized node will be removed.
syncedTips.Lock()
defer syncedTips.Unlock()
canonicalNodesMap := make(map[uint64]uint64, uint64(len(s.nodes))-finalizedIndex)
canonicalNodes := make([]*Node, 1, uint64(len(s.nodes))-finalizedIndex)
finalizedNode := s.nodes[finalizedIndex]
finalizedTipIndex, err := s.findSyncedTip(ctx, finalizedNode, syncedTips)
if err != nil {
return err
}
finalizedNode.parent = NonExistentNode
canonicalNodes[0] = finalizedNode
canonicalNodesMap[finalizedIndex] = uint64(0)
for idx := uint64(0); idx < uint64(len(s.nodes)); idx++ {
node := copyNode(s.nodes[idx])
parentIdx, ok := canonicalNodesMap[node.parent]
if ok {
s.nodesIndices[node.root] = uint64(len(canonicalNodes))
canonicalNodesMap[idx] = uint64(len(canonicalNodes))
node.parent = parentIdx
canonicalNodes = append(canonicalNodes, node)
} else {
// Remove node and synced tip that is not part of finalized branch.
delete(s.nodesIndices, node.root)
_, ok := syncedTips.validatedTips[node.root]
if ok && idx != finalizedTipIndex {
delete(syncedTips.validatedTips, node.root)
}
}
}
s.nodesIndices[finalizedRoot] = uint64(0)
// Recompute the best child and descendant for each canonical nodes.
for _, node := range canonicalNodes {
if node.bestChild != NonExistentNode {
node.bestChild = canonicalNodesMap[node.bestChild]
}
if node.bestDescendant != NonExistentNode {
node.bestDescendant = canonicalNodesMap[node.bestDescendant]
}
}
s.nodes = canonicalNodes
prunedCount.Inc()
syncedTipsCount.Set(float64(len(syncedTips.validatedTips)))
return nil
}
// leadsToViableHead returns true if the node or the best descendant of the node is viable for head.
// Any node with diff finalized or justified epoch than the ones in fork choice store
// should not be viable to head.
func (s *Store) leadsToViableHead(node *Node) (bool, error) {
var bestDescendantViable bool
bestDescendantIndex := node.bestDescendant
// If the best descendant is not part of the leaves.
if bestDescendantIndex != NonExistentNode {
// Protection against out of bound, the best descendant index can not be
// exceeds length of nodes list.
if bestDescendantIndex >= uint64(len(s.nodes)) {
return false, errInvalidBestDescendantIndex
}
bestDescendantNode := s.nodes[bestDescendantIndex]
bestDescendantViable = s.viableForHead(bestDescendantNode)
}
// The node is viable as long as the best descendant is viable.
return bestDescendantViable || s.viableForHead(node), nil
}
// viableForHead returns true if the node is viable to head.
// Any node with diff finalized or justified epoch than the ones in fork choice store
// should not be viable to head.
func (s *Store) viableForHead(node *Node) bool {
// `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`.
// It's also viable if we are in genesis epoch.
justified := s.justifiedEpoch == node.justifiedEpoch || s.justifiedEpoch == 0
finalized := s.finalizedEpoch == node.finalizedEpoch || s.finalizedEpoch == 0
return justified && finalized
}
// Returns the list of leaves in the Fork Choice store.
// These are all the nodes that have NonExistentNode as best child.
// This internal method assumes that the caller holds a lock in s.nodesLock.
func (s *Store) leaves() ([]uint64, error) {
var leaves []uint64
for i := uint64(0); i < uint64(len(s.nodes)); i++ {
node := s.nodes[i]
if node.bestChild == NonExistentNode {
leaves = append(leaves, i)
}
}
return leaves, nil
}
// Tips returns all possible chain heads (leaves of fork choice tree).
// Heads roots and heads slots are returned.
func (f *ForkChoice) Tips() ([][32]byte, []types.Slot) {
// Deliberate choice to not preallocate space for below.
// Heads cant be more than 2-3 in the worst case where pre-allocation will be 64 to begin with.
headsRoots := make([][32]byte, 0)
headsSlots := make([]types.Slot, 0)
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
for _, node := range f.store.nodes {
// Possible heads have no children.
if node.BestDescendant() == NonExistentNode && node.BestChild() == NonExistentNode {
headsRoots = append(headsRoots, node.Root())
headsSlots = append(headsSlots, node.Slot())
}
}
return headsRoots, headsSlots
}
func (f *ForkChoice) ForkChoiceNodes() []*pbrpc.ForkChoiceNode {
f.store.nodesLock.RLock()
defer f.store.nodesLock.RUnlock()
ret := make([]*pbrpc.ForkChoiceNode, len(f.store.nodes))
var parentRoot [32]byte
for i, node := range f.store.nodes {
root := node.Root()
parentIdx := node.parent
if parentIdx == NonExistentNode {
parentRoot = params.BeaconConfig().ZeroHash
} else {
parent := f.store.nodes[parentIdx]
parentRoot = parent.Root()
}
bestDescendantIdx := node.BestDescendant()
var bestDescendantRoot [32]byte
if bestDescendantIdx == NonExistentNode {
bestDescendantRoot = params.BeaconConfig().ZeroHash
} else {
bestDescendantNode := f.store.nodes[bestDescendantIdx]
bestDescendantRoot = bestDescendantNode.Root()
}
ret[i] = &pbrpc.ForkChoiceNode{
Slot: node.Slot(),
Root: root[:],
Parent: parentRoot[:],
JustifiedEpoch: node.JustifiedEpoch(),
FinalizedEpoch: node.FinalizedEpoch(),
Weight: node.Weight(),
BestDescendant: bestDescendantRoot[:],
}
}
return ret
}