prysm-pulse/beacon-chain/state/fieldtrie/field_trie_helpers.go
Radosław Kapka ea31f096b5
Native beacon state: fieldtrie package (#10146)
* Native beacon state: `fieldtrie` package

* reuse ProofFromMerkleLayers

* more reuse + fixes

* more reuse + fixes

* move validateIndices to helpers

* remove TestAppendBeyondIndicesLimit

* do not duplicate package

* correct errors

* handle32ByteArrays function

* type switch

Co-authored-by: Raul Jordan <raul@prysmaticlabs.com>
Co-authored-by: Nishant Das <nishdas93@gmail.com>
2022-02-02 12:18:06 +00:00

346 lines
10 KiB
Go

package fieldtrie
import (
"encoding/binary"
"fmt"
"reflect"
"github.com/pkg/errors"
customtypes "github.com/prysmaticlabs/prysm/beacon-chain/state/state-native/custom-types"
"github.com/prysmaticlabs/prysm/beacon-chain/state/stateutil"
"github.com/prysmaticlabs/prysm/beacon-chain/state/types"
"github.com/prysmaticlabs/prysm/crypto/hash"
"github.com/prysmaticlabs/prysm/encoding/bytesutil"
"github.com/prysmaticlabs/prysm/encoding/ssz"
ethpb "github.com/prysmaticlabs/prysm/proto/prysm/v1alpha1"
"github.com/prysmaticlabs/prysm/runtime/version"
)
// ProofFromMerkleLayers creates a proof starting at the leaf index of the state Merkle layers.
func ProofFromMerkleLayers(layers [][][]byte, startingLeafIndex types.FieldIndex) [][]byte {
// The merkle tree structure looks as follows:
// [[r1, r2, r3, r4], [parent1, parent2], [root]]
proof := make([][]byte, 0)
currentIndex := startingLeafIndex
for i := 0; i < len(layers)-1; i++ {
neighborIdx := currentIndex ^ 1
neighbor := layers[i][neighborIdx]
proof = append(proof, neighbor)
currentIndex = currentIndex / 2
}
return proof
}
func (f *FieldTrie) validateIndices(idxs []uint64) error {
length := f.length
if f.dataType == types.CompressedArray {
comLength, err := f.field.ElemsInChunk()
if err != nil {
return err
}
length *= comLength
}
for _, idx := range idxs {
if idx >= length {
return errors.Errorf("invalid index for field %s: %d >= length %d", f.field.String(version.Phase0), idx, length)
}
}
return nil
}
func validateElements(field types.FieldIndex, dataType types.DataType, elements interface{}, length uint64) error {
if dataType == types.CompressedArray {
comLength, err := field.ElemsInChunk()
if err != nil {
return err
}
length *= comLength
}
val := reflect.Indirect(reflect.ValueOf(elements))
if val.Len() > int(length) {
return errors.Errorf("elements length is larger than expected for field %s: %d > %d", field.String(version.Phase0), val.Len(), length)
}
return nil
}
// fieldConverters converts the corresponding field and the provided elements to the appropriate roots.
func fieldConverters(field types.FieldIndex, indices []uint64, elements interface{}, convertAll bool) ([][32]byte, error) {
switch field {
case types.BlockRoots:
switch val := elements.(type) {
case [][]byte:
return handleByteArrays(val, indices, convertAll)
case *customtypes.BlockRoots:
return handle32ByteArrays(val[:], indices, convertAll)
default:
return nil, errors.Errorf("Incorrect type used for block roots")
}
case types.StateRoots:
switch val := elements.(type) {
case [][]byte:
return handleByteArrays(val, indices, convertAll)
case *customtypes.StateRoots:
return handle32ByteArrays(val[:], indices, convertAll)
default:
return nil, errors.Errorf("Incorrect type used for state roots")
}
case types.RandaoMixes:
switch val := elements.(type) {
case [][]byte:
return handleByteArrays(val, indices, convertAll)
case *customtypes.RandaoMixes:
return handle32ByteArrays(val[:], indices, convertAll)
default:
return nil, errors.Errorf("Incorrect type used for randao mixes")
}
case types.Eth1DataVotes:
val, ok := elements.([]*ethpb.Eth1Data)
if !ok {
return nil, errors.Errorf("Wanted type of %v but got %v",
reflect.TypeOf([]*ethpb.Eth1Data{}).Name(), reflect.TypeOf(elements).Name())
}
return handleEth1DataSlice(val, indices, convertAll)
case types.Validators:
val, ok := elements.([]*ethpb.Validator)
if !ok {
return nil, errors.Errorf("Wanted type of %v but got %v",
reflect.TypeOf([]*ethpb.Validator{}).Name(), reflect.TypeOf(elements).Name())
}
return handleValidatorSlice(val, indices, convertAll)
case types.PreviousEpochAttestations, types.CurrentEpochAttestations:
val, ok := elements.([]*ethpb.PendingAttestation)
if !ok {
return nil, errors.Errorf("Wanted type of %v but got %v",
reflect.TypeOf([]*ethpb.PendingAttestation{}).Name(), reflect.TypeOf(elements).Name())
}
return handlePendingAttestationSlice(val, indices, convertAll)
case types.Balances:
val, ok := elements.([]uint64)
if !ok {
return nil, errors.Errorf("Wanted type of %v but got %v",
reflect.TypeOf([]uint64{}).Name(), reflect.TypeOf(elements).Name())
}
return handleBalanceSlice(val, indices, convertAll)
default:
return [][32]byte{}, errors.Errorf("got unsupported type of %v", reflect.TypeOf(elements).Name())
}
}
// handleByteArrays computes and returns byte arrays in a slice of root format.
func handleByteArrays(val [][]byte, indices []uint64, convertAll bool) ([][32]byte, error) {
length := len(indices)
if convertAll {
length = len(val)
}
roots := make([][32]byte, 0, length)
rootCreator := func(input []byte) {
newRoot := bytesutil.ToBytes32(input)
roots = append(roots, newRoot)
}
if convertAll {
for i := range val {
rootCreator(val[i])
}
return roots, nil
}
if len(val) > 0 {
for _, idx := range indices {
if idx > uint64(len(val))-1 {
return nil, fmt.Errorf("index %d greater than number of byte arrays %d", idx, len(val))
}
rootCreator(val[idx])
}
}
return roots, nil
}
// handle32ByteArrays computes and returns 32 byte arrays in a slice of root format.
func handle32ByteArrays(val [][32]byte, indices []uint64, convertAll bool) ([][32]byte, error) {
length := len(indices)
if convertAll {
length = len(val)
}
roots := make([][32]byte, 0, length)
rootCreator := func(input [32]byte) {
roots = append(roots, input)
}
if convertAll {
for i := range val {
rootCreator(val[i])
}
return roots, nil
}
if len(val) > 0 {
for _, idx := range indices {
if idx > uint64(len(val))-1 {
return nil, fmt.Errorf("index %d greater than number of byte arrays %d", idx, len(val))
}
rootCreator(val[idx])
}
}
return roots, nil
}
// handleValidatorSlice returns the validator indices in a slice of root format.
func handleValidatorSlice(val []*ethpb.Validator, indices []uint64, convertAll bool) ([][32]byte, error) {
length := len(indices)
if convertAll {
length = len(val)
}
roots := make([][32]byte, 0, length)
hasher := hash.CustomSHA256Hasher()
rootCreator := func(input *ethpb.Validator) error {
newRoot, err := stateutil.ValidatorRootWithHasher(hasher, input)
if err != nil {
return err
}
roots = append(roots, newRoot)
return nil
}
if convertAll {
for i := range val {
err := rootCreator(val[i])
if err != nil {
return nil, err
}
}
return roots, nil
}
if len(val) > 0 {
for _, idx := range indices {
if idx > uint64(len(val))-1 {
return nil, fmt.Errorf("index %d greater than number of validators %d", idx, len(val))
}
err := rootCreator(val[idx])
if err != nil {
return nil, err
}
}
}
return roots, nil
}
// handleEth1DataSlice processes a list of eth1data and indices into the appropriate roots.
func handleEth1DataSlice(val []*ethpb.Eth1Data, indices []uint64, convertAll bool) ([][32]byte, error) {
length := len(indices)
if convertAll {
length = len(val)
}
roots := make([][32]byte, 0, length)
hasher := hash.CustomSHA256Hasher()
rootCreator := func(input *ethpb.Eth1Data) error {
newRoot, err := stateutil.Eth1DataRootWithHasher(hasher, input)
if err != nil {
return err
}
roots = append(roots, newRoot)
return nil
}
if convertAll {
for i := range val {
err := rootCreator(val[i])
if err != nil {
return nil, err
}
}
return roots, nil
}
if len(val) > 0 {
for _, idx := range indices {
if idx > uint64(len(val))-1 {
return nil, fmt.Errorf("index %d greater than number of items in eth1 data slice %d", idx, len(val))
}
err := rootCreator(val[idx])
if err != nil {
return nil, err
}
}
}
return roots, nil
}
// handlePendingAttestationSlice returns the root of a slice of pending attestations.
func handlePendingAttestationSlice(val []*ethpb.PendingAttestation, indices []uint64, convertAll bool) ([][32]byte, error) {
length := len(indices)
if convertAll {
length = len(val)
}
roots := make([][32]byte, 0, length)
hasher := hash.CustomSHA256Hasher()
rootCreator := func(input *ethpb.PendingAttestation) error {
newRoot, err := stateutil.PendingAttRootWithHasher(hasher, input)
if err != nil {
return err
}
roots = append(roots, newRoot)
return nil
}
if convertAll {
for i := range val {
err := rootCreator(val[i])
if err != nil {
return nil, err
}
}
return roots, nil
}
if len(val) > 0 {
for _, idx := range indices {
if idx > uint64(len(val))-1 {
return nil, fmt.Errorf("index %d greater than number of pending attestations %d", idx, len(val))
}
err := rootCreator(val[idx])
if err != nil {
return nil, err
}
}
}
return roots, nil
}
// handleBalanceSlice returns the root of a slice of validator balances.
func handleBalanceSlice(val, indices []uint64, convertAll bool) ([][32]byte, error) {
if convertAll {
balancesMarshaling := make([][]byte, 0)
for _, b := range val {
balanceBuf := make([]byte, 8)
binary.LittleEndian.PutUint64(balanceBuf, b)
balancesMarshaling = append(balancesMarshaling, balanceBuf)
}
balancesChunks, err := ssz.PackByChunk(balancesMarshaling)
if err != nil {
return [][32]byte{}, errors.Wrap(err, "could not pack balances into chunks")
}
return balancesChunks, nil
}
if len(val) > 0 {
numOfElems, err := types.Balances.ElemsInChunk()
if err != nil {
return nil, err
}
roots := [][32]byte{}
for _, idx := range indices {
// We split the indexes into their relevant groups. Balances
// are compressed according to 4 values -> 1 chunk.
startIdx := idx / numOfElems
startGroup := startIdx * numOfElems
chunk := [32]byte{}
sizeOfElem := len(chunk) / int(numOfElems)
for i, j := 0, startGroup; j < startGroup+numOfElems; i, j = i+sizeOfElem, j+1 {
wantedVal := uint64(0)
// We are adding chunks in sets of 4, if the set is at the edge of the array
// then you will need to zero out the rest of the chunk. Ex : 41 indexes,
// so 41 % 4 = 1 . There are 3 indexes, which do not exist yet but we
// have to add in as a root. These 3 indexes are then given a 'zero' value.
if int(j) < len(val) {
wantedVal = val[j]
}
binary.LittleEndian.PutUint64(chunk[i:i+sizeOfElem], wantedVal)
}
roots = append(roots, chunk)
}
return roots, nil
}
return [][32]byte{}, nil
}