prysm-pulse/beacon-chain/core/helpers/shuffle.go
terence 5a66807989
Update to V5 (#13622)
* First take at updating everything to v5

* Patch gRPC gateway to use prysm v5

Fix patch

* Update go ssz

---------

Co-authored-by: Preston Van Loon <pvanloon@offchainlabs.com>
2024-02-15 05:46:47 +00:00

238 lines
8.9 KiB
Go

package helpers
import (
"encoding/binary"
"fmt"
"github.com/prysmaticlabs/prysm/v5/config/params"
"github.com/prysmaticlabs/prysm/v5/consensus-types/primitives"
"github.com/prysmaticlabs/prysm/v5/container/slice"
"github.com/prysmaticlabs/prysm/v5/crypto/hash"
"github.com/prysmaticlabs/prysm/v5/encoding/bytesutil"
)
const seedSize = int8(32)
const roundSize = int8(1)
const positionWindowSize = int8(4)
const pivotViewSize = seedSize + roundSize
const totalSize = seedSize + roundSize + positionWindowSize
var maxShuffleListSize uint64 = 1 << 40
// SplitIndices splits a list into n pieces.
func SplitIndices(l []uint64, n uint64) [][]uint64 {
var divided [][]uint64
var lSize = uint64(len(l))
for i := uint64(0); i < n; i++ {
start := slice.SplitOffset(lSize, n, i)
end := slice.SplitOffset(lSize, n, i+1)
divided = append(divided, l[start:end])
}
return divided
}
// ShuffledIndex returns `p(index)` in a pseudorandom permutation `p` of `0...list_size - 1` with “seed“ as entropy.
// We utilize 'swap or not' shuffling in this implementation; we are allocating the memory with the seed that stays
// constant between iterations instead of reallocating it each iteration as in the spec. This implementation is based
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
func ShuffledIndex(index primitives.ValidatorIndex, indexCount uint64, seed [32]byte) (primitives.ValidatorIndex, error) {
return ComputeShuffledIndex(index, indexCount, seed, true /* shuffle */)
}
// UnShuffledIndex returns the inverse of ShuffledIndex. This implementation is based
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
func UnShuffledIndex(index primitives.ValidatorIndex, indexCount uint64, seed [32]byte) (primitives.ValidatorIndex, error) {
return ComputeShuffledIndex(index, indexCount, seed, false /* un-shuffle */)
}
// ComputeShuffledIndex returns the shuffled validator index corresponding to seed and index count.
// Spec pseudocode definition:
//
// def compute_shuffled_index(index: uint64, index_count: uint64, seed: Bytes32) -> uint64:
// """
// Return the shuffled index corresponding to ``seed`` (and ``index_count``).
// """
// assert index < index_count
//
// # Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
// # See the 'generalized domain' algorithm on page 3
// for current_round in range(SHUFFLE_ROUND_COUNT):
// pivot = bytes_to_uint64(hash(seed + uint_to_bytes(uint8(current_round)))[0:8]) % index_count
// flip = (pivot + index_count - index) % index_count
// position = max(index, flip)
// source = hash(
// seed
// + uint_to_bytes(uint8(current_round))
// + uint_to_bytes(uint32(position // 256))
// )
// byte = uint8(source[(position % 256) // 8])
// bit = (byte >> (position % 8)) % 2
// index = flip if bit else index
//
// return index
func ComputeShuffledIndex(index primitives.ValidatorIndex, indexCount uint64, seed [32]byte, shuffle bool) (primitives.ValidatorIndex, error) {
if params.BeaconConfig().ShuffleRoundCount == 0 {
return index, nil
}
if uint64(index) >= indexCount {
return 0, fmt.Errorf("input index %d out of bounds: %d",
index, indexCount)
}
if indexCount > maxShuffleListSize {
return 0, fmt.Errorf("list size %d out of bounds",
indexCount)
}
rounds := uint8(params.BeaconConfig().ShuffleRoundCount)
round := uint8(0)
if !shuffle {
// Starting last round and iterating through the rounds in reverse, un-swaps everything,
// effectively un-shuffling the list.
round = rounds - 1
}
buf := make([]byte, totalSize)
posBuffer := make([]byte, 8)
hashfunc := hash.CustomSHA256Hasher()
// Seed is always the first 32 bytes of the hash input, we never have to change this part of the buffer.
copy(buf[:32], seed[:])
for {
buf[seedSize] = round
h := hashfunc(buf[:pivotViewSize])
hash8 := h[:8]
hash8Int := bytesutil.FromBytes8(hash8)
pivot := hash8Int % indexCount
flip := (pivot + indexCount - uint64(index)) % indexCount
// Consider every pair only once by picking the highest pair index to retrieve randomness.
position := uint64(index)
if flip > position {
position = flip
}
// Add position except its last byte to []buf for randomness,
// it will be used later to select a bit from the resulting hash.
binary.LittleEndian.PutUint64(posBuffer[:8], position>>8)
copy(buf[pivotViewSize:], posBuffer[:4])
source := hashfunc(buf)
// Effectively keep the first 5 bits of the byte value of the position,
// and use it to retrieve one of the 32 (= 2^5) bytes of the hash.
byteV := source[(position&0xff)>>3]
// Using the last 3 bits of the position-byte, determine which bit to get from the hash-byte (note: 8 bits = 2^3)
bitV := (byteV >> (position & 0x7)) & 0x1
// index = flip if bit else index
if bitV == 1 {
index = primitives.ValidatorIndex(flip)
}
if shuffle {
round++
if round == rounds {
break
}
} else {
if round == 0 {
break
}
round--
}
}
return index, nil
}
// ShuffleList returns list of shuffled indexes in a pseudorandom permutation `p` of `0...list_size - 1` with “seed“ as entropy.
// We utilize 'swap or not' shuffling in this implementation; we are allocating the memory with the seed that stays
// constant between iterations instead of reallocating it each iteration as in the spec. This implementation is based
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
//
// improvements:
// - seed is always the first 32 bytes of the hash input, we just copy it into the buffer one time.
// - add round byte to seed and hash that part of the buffer.
// - split up the for-loop in two:
// 1. Handle the part from 0 (incl) to pivot (incl). This is mirrored around (pivot / 2).
// 2. Handle the part from pivot (excl) to N (excl). This is mirrored around ((pivot / 2) + (size/2)).
// - hash source every 256 iterations.
// - change byteV every 8 iterations.
// - we start at the edges, and work back to the mirror point.
// this makes us process each pear exactly once (instead of unnecessarily twice, like in the spec).
func ShuffleList(input []primitives.ValidatorIndex, seed [32]byte) ([]primitives.ValidatorIndex, error) {
return innerShuffleList(input, seed, true /* shuffle */)
}
// UnshuffleList un-shuffles the list by running backwards through the round count.
func UnshuffleList(input []primitives.ValidatorIndex, seed [32]byte) ([]primitives.ValidatorIndex, error) {
return innerShuffleList(input, seed, false /* un-shuffle */)
}
// shuffles or unshuffles, shuffle=false to un-shuffle.
func innerShuffleList(input []primitives.ValidatorIndex, seed [32]byte, shuffle bool) ([]primitives.ValidatorIndex, error) {
if len(input) <= 1 {
return input, nil
}
if uint64(len(input)) > maxShuffleListSize {
return nil, fmt.Errorf("list size %d out of bounds",
len(input))
}
rounds := uint8(params.BeaconConfig().ShuffleRoundCount)
hashfunc := hash.CustomSHA256Hasher()
if rounds == 0 {
return input, nil
}
listSize := uint64(len(input))
buf := make([]byte, totalSize)
r := uint8(0)
if !shuffle {
r = rounds - 1
}
copy(buf[:seedSize], seed[:])
for {
buf[seedSize] = r
ph := hashfunc(buf[:pivotViewSize])
pivot := binary.LittleEndian.Uint64(ph[:8]) % listSize
mirror := (pivot + 1) >> 1
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(pivot>>8))
source := hashfunc(buf)
byteV := source[(pivot&0xff)>>3]
for i, j := uint64(0), pivot; i < mirror; i, j = i+1, j-1 {
byteV, source = swapOrNot(buf, byteV, primitives.ValidatorIndex(i), input, primitives.ValidatorIndex(j), source, hashfunc)
}
// Now repeat, but for the part after the pivot.
mirror = (pivot + listSize + 1) >> 1
end := listSize - 1
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(end>>8))
source = hashfunc(buf)
byteV = source[(end&0xff)>>3]
for i, j := pivot+1, end; i < mirror; i, j = i+1, j-1 {
byteV, source = swapOrNot(buf, byteV, primitives.ValidatorIndex(i), input, primitives.ValidatorIndex(j), source, hashfunc)
}
if shuffle {
r++
if r == rounds {
break
}
} else {
if r == 0 {
break
}
r--
}
}
return input, nil
}
// swapOrNot describes the main algorithm behind the shuffle where we swap bytes in the inputted value
// depending on if the conditions are met.
func swapOrNot(buf []byte, byteV byte, i primitives.ValidatorIndex, input []primitives.ValidatorIndex,
j primitives.ValidatorIndex, source [32]byte, hashFunc func([]byte) [32]byte) (byte, [32]byte) {
if j&0xff == 0xff {
// just overwrite the last part of the buffer, reuse the start (seed, round)
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(j>>8))
source = hashFunc(buf)
}
if j&0x7 == 0x7 {
byteV = source[(j&0xff)>>3]
}
bitV := (byteV >> (j & 0x7)) & 0x1
if bitV == 1 {
input[i], input[j] = input[j], input[i]
}
return byteV, source
}