mirror of
https://gitlab.com/pulsechaincom/prysm-pulse.git
synced 2025-01-15 06:28:20 +00:00
33105f1bbc
* removed redundant args * Merge refs/heads/master into omit-redundant-make-args
231 lines
8.4 KiB
Go
231 lines
8.4 KiB
Go
package helpers
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
|
|
"github.com/prysmaticlabs/prysm/shared/bytesutil"
|
|
"github.com/prysmaticlabs/prysm/shared/hashutil"
|
|
"github.com/prysmaticlabs/prysm/shared/params"
|
|
"github.com/prysmaticlabs/prysm/shared/sliceutil"
|
|
)
|
|
|
|
const seedSize = int8(32)
|
|
const roundSize = int8(1)
|
|
const positionWindowSize = int8(4)
|
|
const pivotViewSize = seedSize + roundSize
|
|
const totalSize = seedSize + roundSize + positionWindowSize
|
|
|
|
var maxShuffleListSize uint64 = 1 << 40
|
|
|
|
// SplitIndices splits a list into n pieces.
|
|
func SplitIndices(l []uint64, n uint64) [][]uint64 {
|
|
var divided [][]uint64
|
|
var lSize = uint64(len(l))
|
|
for i := uint64(0); i < n; i++ {
|
|
start := sliceutil.SplitOffset(lSize, n, i)
|
|
end := sliceutil.SplitOffset(lSize, n, i+1)
|
|
divided = append(divided, l[start:end])
|
|
}
|
|
return divided
|
|
}
|
|
|
|
// ShuffledIndex returns `p(index)` in a pseudorandom permutation `p` of `0...list_size - 1` with ``seed`` as entropy.
|
|
// We utilize 'swap or not' shuffling in this implementation; we are allocating the memory with the seed that stays
|
|
// constant between iterations instead of reallocating it each iteration as in the spec. This implementation is based
|
|
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
|
|
func ShuffledIndex(index uint64, indexCount uint64, seed [32]byte) (uint64, error) {
|
|
return ComputeShuffledIndex(index, indexCount, seed, true /* shuffle */)
|
|
}
|
|
|
|
// UnShuffledIndex returns the inverse of ShuffledIndex. This implementation is based
|
|
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
|
|
func UnShuffledIndex(index uint64, indexCount uint64, seed [32]byte) (uint64, error) {
|
|
return ComputeShuffledIndex(index, indexCount, seed, false /* un-shuffle */)
|
|
}
|
|
|
|
// ComputeShuffledIndex returns the shuffled validator index corresponding to seed and index count.
|
|
// Spec pseudocode definition:
|
|
// def compute_shuffled_index(index: ValidatorIndex, index_count: uint64, seed: Hash) -> ValidatorIndex:
|
|
// """
|
|
// Return the shuffled validator index corresponding to ``seed`` (and ``index_count``).
|
|
// """
|
|
// assert index < index_count
|
|
//
|
|
// # Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
|
|
// # See the 'generalized domain' algorithm on page 3
|
|
// for current_round in range(SHUFFLE_ROUND_COUNT):
|
|
// pivot = bytes_to_int(hash(seed + int_to_bytes(current_round, length=1))[0:8]) % index_count
|
|
// flip = ValidatorIndex((pivot + index_count - index) % index_count)
|
|
// position = max(index, flip)
|
|
// source = hash(seed + int_to_bytes(current_round, length=1) + int_to_bytes(position // 256, length=4))
|
|
// byte = source[(position % 256) // 8]
|
|
// bit = (byte >> (position % 8)) % 2
|
|
// index = flip if bit else index
|
|
//
|
|
// return ValidatorIndex(index)
|
|
func ComputeShuffledIndex(index uint64, indexCount uint64, seed [32]byte, shuffle bool) (uint64, error) {
|
|
if params.BeaconConfig().ShuffleRoundCount == 0 {
|
|
return index, nil
|
|
}
|
|
if index >= indexCount {
|
|
return 0, fmt.Errorf("input index %d out of bounds: %d",
|
|
index, indexCount)
|
|
}
|
|
if indexCount > maxShuffleListSize {
|
|
return 0, fmt.Errorf("list size %d out of bounds",
|
|
indexCount)
|
|
}
|
|
rounds := uint8(params.BeaconConfig().ShuffleRoundCount)
|
|
round := uint8(0)
|
|
if !shuffle {
|
|
// Starting last round and iterating through the rounds in reverse, un-swaps everything,
|
|
// effectively un-shuffling the list.
|
|
round = rounds - 1
|
|
}
|
|
buf := make([]byte, totalSize)
|
|
posBuffer := make([]byte, 8)
|
|
hashfunc := hashutil.CustomSHA256Hasher()
|
|
|
|
// Seed is always the first 32 bytes of the hash input, we never have to change this part of the buffer.
|
|
copy(buf[:32], seed[:])
|
|
for {
|
|
buf[seedSize] = round
|
|
hash := hashfunc(buf[:pivotViewSize])
|
|
hash8 := hash[:8]
|
|
hash8Int := bytesutil.FromBytes8(hash8)
|
|
pivot := hash8Int % indexCount
|
|
flip := (pivot + indexCount - index) % indexCount
|
|
// Consider every pair only once by picking the highest pair index to retrieve randomness.
|
|
position := index
|
|
if flip > position {
|
|
position = flip
|
|
}
|
|
// Add position except its last byte to []buf for randomness,
|
|
// it will be used later to select a bit from the resulting hash.
|
|
binary.LittleEndian.PutUint64(posBuffer[:8], position>>8)
|
|
copy(buf[pivotViewSize:], posBuffer[:4])
|
|
source := hashfunc(buf)
|
|
// Effectively keep the first 5 bits of the byte value of the position,
|
|
// and use it to retrieve one of the 32 (= 2^5) bytes of the hash.
|
|
byteV := source[(position&0xff)>>3]
|
|
// Using the last 3 bits of the position-byte, determine which bit to get from the hash-byte (note: 8 bits = 2^3)
|
|
bitV := (byteV >> (position & 0x7)) & 0x1
|
|
// index = flip if bit else index
|
|
if bitV == 1 {
|
|
index = flip
|
|
}
|
|
if shuffle {
|
|
round++
|
|
if round == rounds {
|
|
break
|
|
}
|
|
} else {
|
|
if round == 0 {
|
|
break
|
|
}
|
|
round--
|
|
}
|
|
}
|
|
return index, nil
|
|
}
|
|
|
|
// ShuffleList returns list of shuffled indexes in a pseudorandom permutation `p` of `0...list_size - 1` with ``seed`` as entropy.
|
|
// We utilize 'swap or not' shuffling in this implementation; we are allocating the memory with the seed that stays
|
|
// constant between iterations instead of reallocating it each iteration as in the spec. This implementation is based
|
|
// on the original implementation from protolambda, https://github.com/protolambda/eth2-shuffle
|
|
// improvements:
|
|
// - seed is always the first 32 bytes of the hash input, we just copy it into the buffer one time.
|
|
// - add round byte to seed and hash that part of the buffer.
|
|
// - split up the for-loop in two:
|
|
// 1. Handle the part from 0 (incl) to pivot (incl). This is mirrored around (pivot / 2).
|
|
// 2. Handle the part from pivot (excl) to N (excl). This is mirrored around ((pivot / 2) + (size/2)).
|
|
// - hash source every 256 iterations.
|
|
// - change byteV every 8 iterations.
|
|
// - we start at the edges, and work back to the mirror point.
|
|
// this makes us process each pear exactly once (instead of unnecessarily twice, like in the spec).
|
|
func ShuffleList(input []uint64, seed [32]byte) ([]uint64, error) {
|
|
return innerShuffleList(input, seed, true /* shuffle */)
|
|
}
|
|
|
|
// UnshuffleList un-shuffles the list by running backwards through the round count.
|
|
func UnshuffleList(input []uint64, seed [32]byte) ([]uint64, error) {
|
|
return innerShuffleList(input, seed, false /* un-shuffle */)
|
|
}
|
|
|
|
// shuffles or unshuffles, shuffle=false to un-shuffle.
|
|
func innerShuffleList(input []uint64, seed [32]byte, shuffle bool) ([]uint64, error) {
|
|
if len(input) <= 1 {
|
|
return input, nil
|
|
}
|
|
if uint64(len(input)) > maxShuffleListSize {
|
|
return nil, fmt.Errorf("list size %d out of bounds",
|
|
len(input))
|
|
}
|
|
rounds := uint8(params.BeaconConfig().ShuffleRoundCount)
|
|
hashfunc := hashutil.CustomSHA256Hasher()
|
|
if rounds == 0 {
|
|
return input, nil
|
|
}
|
|
listSize := uint64(len(input))
|
|
buf := make([]byte, totalSize)
|
|
r := uint8(0)
|
|
if !shuffle {
|
|
r = rounds - 1
|
|
}
|
|
copy(buf[:seedSize], seed[:])
|
|
for {
|
|
buf[seedSize] = r
|
|
ph := hashfunc(buf[:pivotViewSize])
|
|
pivot := bytesutil.FromBytes8(ph[:8]) % listSize
|
|
mirror := (pivot + 1) >> 1
|
|
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(pivot>>8))
|
|
source := hashfunc(buf)
|
|
byteV := source[(pivot&0xff)>>3]
|
|
for i, j := uint64(0), pivot; i < mirror; i, j = i+1, j-1 {
|
|
byteV, source = swapOrNot(buf, byteV, i, input, j, source, hashfunc)
|
|
}
|
|
// Now repeat, but for the part after the pivot.
|
|
mirror = (pivot + listSize + 1) >> 1
|
|
end := listSize - 1
|
|
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(end>>8))
|
|
source = hashfunc(buf)
|
|
byteV = source[(end&0xff)>>3]
|
|
for i, j := pivot+1, end; i < mirror; i, j = i+1, j-1 {
|
|
byteV, source = swapOrNot(buf, byteV, i, input, j, source, hashfunc)
|
|
}
|
|
if shuffle {
|
|
r++
|
|
if r == rounds {
|
|
break
|
|
}
|
|
} else {
|
|
if r == 0 {
|
|
break
|
|
}
|
|
r--
|
|
}
|
|
}
|
|
return input, nil
|
|
}
|
|
|
|
// swapOrNot describes the main algorithm behind the shuffle where we swap bytes in the inputted value
|
|
// depending on if the conditions are met.
|
|
func swapOrNot(buf []byte, byteV byte, i uint64, input []uint64,
|
|
j uint64, source [32]byte, hashFunc func([]byte) [32]byte) (byte, [32]byte) {
|
|
if j&0xff == 0xff {
|
|
// just overwrite the last part of the buffer, reuse the start (seed, round)
|
|
binary.LittleEndian.PutUint32(buf[pivotViewSize:], uint32(j>>8))
|
|
source = hashFunc(buf)
|
|
}
|
|
if j&0x7 == 0x7 {
|
|
byteV = source[(j&0xff)>>3]
|
|
}
|
|
bitV := (byteV >> (j & 0x7)) & 0x1
|
|
|
|
if bitV == 1 {
|
|
input[i], input[j] = input[j], input[i]
|
|
}
|
|
return byteV, source
|
|
}
|