prysm-pulse/sharding/contracts/validator_manager.sol
Fynn 4c2180be1d WIP: Validator manager contract in solidity
Former-commit-id: 98483e7425feed46ae2a946e7d86461cbcf28d21 [formerly 334390368a91c34c1d66b0e262fcaef293cd6409]
Former-commit-id: 7f5f7dc5385c8cef6ecea39040f915554472a736
2018-01-15 23:01:24 +01:00

231 lines
7.6 KiB
Solidity

pragma solidity ^0.4.19;
contract VMC {
struct Validator {
// Amount of wei the validator holds
uint deposit;
// The address which the validator's signatures must verify to (to be later replaced with validation code)
address validationCodeAddr;
// Addess to withdraw to
address returnAddr;
// The cycle number which the validator would be included after
int cycle;
}
struct CollationHeader {
bytes32 parentCollationHash;
int score;
}
struct Receipt {
int shardId;
uint txStartgas;
uint txGasprice;
uint value;
address sender;
address to;
bytes12 data;
}
mapping (int => Validator) validators;
mapping (int => mapping (bytes32 => CollationHeader)) collationHeaders;
mapping (int => Receipt) receipts;
mapping (int => bytes32) shardHead;
int numValidators;
int numReceipts;
// Indexs of empty slots caused by the function `withdraw`
mapping (int => int) emptySlotsStack;
// The top index of the stack in empty_slots_stack
int emptySlotsStackTop;
// The exact deposit size which you have to deposit to become a validator
uint depositSize;
// Any given validator randomly gets allocated to some number of shards every SHUFFLING_CYCLE
int shufflingCycleLength;
// Gas limit of the signature validation code
uint sigGasLimit;
// Is a valcode addr deposited now?
mapping (address => bool) isValcodeDeposited;
uint periodLength;
int numValidatorsPerCycle;
int shardCount;
bytes32 addHeaderLogTopic;
address sighasherAddr;
// Log the latest period number of the shard
mapping (int => int) periodHead;
function VMC() public {
numValidators = 0;
emptySlotsStackTop = 0;
depositSize = 100 ether;
shufflingCycleLength = 5; // FIXME: just modified temporarily for test;
sigGasLimit = 400000;
periodLength = 5;
numValidatorsPerCycle = 100;
shardCount = 100;
addHeaderLogTopic = keccak256("add_header()");
sighasherAddr = 0xDFFD41E18F04Ad8810c83B14FD1426a82E625A7D;
}
function isStackEmpty() internal view returns(bool) {
return emptySlotsStackTop == 0;
}
function stackPush(int index) internal {
emptySlotsStack[emptySlotsStackTop] = index;
++emptySlotsStackTop;
}
function stackPop() internal returns(int) {
if (isStackEmpty())
return -1;
--emptySlotsStackTop;
return emptySlotsStack[emptySlotsStackTop];
}
function getValidatorsMaxIndex() public view returns(int) {
address zeroAddr = 0x0;
int activateValidatorNum = 0;
int currentCycle = int(block.number) / shufflingCycleLength;
int allValidatorSlotsNum = numValidators + emptySlotsStackTop;
// TODO: any better way to iterate the mapping?
for (int i = 0; i < 1024; ++i) {
if (i >= allValidatorSlotsNum)
break;
if ((validators[i].validationCodeAddr != zeroAddr) &&
(validators[i].cycle <= currentCycle))
activateValidatorNum += 1;
}
return activateValidatorNum + emptySlotsStackTop;
}
function deposit(address _validationCodeAddr, address _returnAddr) public payable returns(int) {
require(!isValcodeDeposited[_validationCodeAddr]);
require(msg.value == depositSize);
// Find the empty slot index in validators set
int index;
int nextCycle = 0;
if (!isStackEmpty())
index = stackPop();
else {
index = int(numValidators);
nextCycle = (int(block.number) / shufflingCycleLength) + 1;
validators[index] = Validator({
deposit: msg.value,
validationCodeAddr: _validationCodeAddr,
returnAddr: _returnAddr,
cycle: nextCycle
});
}
++numValidators;
isValcodeDeposited[_validationCodeAddr] = true;
log2(keccak256("deposit()"), bytes32(_validationCodeAddr), bytes32(index));
return index;
}
function withdraw(uint _validatorIndex, bytes10 _sig) public returns(bool) {
// TODO
}
function sample(int _shardId) public constant returns(address) {
require(block.number >= periodLength);
var cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
int cycleSeed = int(block.blockhash(uint(cycleStartBlockNumber)));
// originally, error occurs when block.number <= 4 because
// `seed_block_number` becomes negative in these cases.
int seed = int(block.blockhash(block.number - (block.number % uint(periodLength)) - 1));
uint indexInSubset = uint(keccak256(seed, bytes32(_shardId))) % uint(numValidatorsPerCycle);
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(_shardId), bytes32(indexInSubset))) % uint(getValidatorsMaxIndex());
if (validators[int(validatorIndex)].cycle > cycle)
return 0x0;
else
return validators[int(validatorIndex)].validationCodeAddr;
}
// Get all possible shard ids that the given valcode_addr
// may be sampled in the current cycle
function getShardList(address _valcodeAddr) public constant returns(bool[100]) {
bool[100] memory shardList;
int cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
var cycleSeed = block.blockhash(uint(cycleStartBlockNumber));
int validatorsMaxIndex = getValidatorsMaxIndex();
if (numValidators != 0) {
for (uint8 shardId = 0; shardId < 100; ++shardId) {
shardList[shardId] = false;
for (int possibleIndexInSubset = 0; possibleIndexInSubset < 100; ++possibleIndexInSubset) {
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(shardId), bytes32(possibleIndexInSubset)))
% uint(validatorsMaxIndex);
if (_valcodeAddr == validators[int(validatorIndex)].validationCodeAddr) {
shardList[shardId] = true;
break;
}
}
}
}
return shardList;
}
function addHeader(bytes12 header) public returns(bool) {
// TODO
}
function getPeriodStartPrevhash(uint _expectedPeriodNumber) public constant returns(bytes32) {
uint blockNumber = _expectedPeriodNumber * periodLength - 1;
require(block.number > blockNumber);
return block.blockhash(blockNumber);
}
// Returns the difference between the block number of this hash and the block
// number of the 10000th ancestor of this hash.
function getAncestorDistance(bytes32 /*_hash*/) public pure returns(bytes32) {
// TODO
}
// Returns the gas limit that collations can currently have (by default make
// this function always answer 10 million).
function getCollationGasLimit() public pure returns(uint) {
return 10000000;
}
// Records a request to deposit msg.value ETH to address to in shard shard_id
// during a future collation. Saves a `receipt ID` for this request,
// also saving `msg.sender`, `msg.value`, `to`, `shard_id`, `startgas`,
// `gasprice`, and `data`.
function txToShard(address _to, int _shardId, uint _txStartgas, uint _txGasprice, bytes12 _data) public payable returns(int) {
receipts[numReceipts] = Receipt({
shardId: _shardId,
txStartgas: _txStartgas,
txGasprice: _txGasprice,
value: msg.value,
sender: msg.sender,
to: _to,
data: _data
});
var receiptId = numReceipts;
++numReceipts;
log3(keccak256("tx_to_shard()"), bytes32(_to), bytes32(_shardId), bytes32(receiptId));
return receiptId;
}
function updataGasPrice(int _receiptId, uint _txGasprice) public payable returns(bool) {
require(receipts[_receiptId].sender == msg.sender);
receipts[_receiptId].txGasprice = _txGasprice;
return true;
}
}