prysm-pulse/beacon-chain/sync/pending_blocks_queue.go
Potuz 6b915bab26
Dont process blocks twice (#12905)
* keep track of block being synced

* gazelle

* use maps

* shutup deepsource

* change godoc

* Radek's review

* Do not process block twice if it's already being processed

* add unit test
2023-09-15 20:11:02 +00:00

517 lines
14 KiB
Go

package sync
import (
"context"
"encoding/hex"
"fmt"
"sort"
"sync"
"time"
"github.com/pkg/errors"
"github.com/prysmaticlabs/prysm/v4/async"
"github.com/prysmaticlabs/prysm/v4/beacon-chain/blockchain"
p2ptypes "github.com/prysmaticlabs/prysm/v4/beacon-chain/p2p/types"
"github.com/prysmaticlabs/prysm/v4/config/params"
"github.com/prysmaticlabs/prysm/v4/consensus-types/blocks"
"github.com/prysmaticlabs/prysm/v4/consensus-types/interfaces"
"github.com/prysmaticlabs/prysm/v4/consensus-types/primitives"
"github.com/prysmaticlabs/prysm/v4/crypto/rand"
"github.com/prysmaticlabs/prysm/v4/encoding/bytesutil"
"github.com/prysmaticlabs/prysm/v4/encoding/ssz/equality"
"github.com/prysmaticlabs/prysm/v4/monitoring/tracing"
eth "github.com/prysmaticlabs/prysm/v4/proto/prysm/v1alpha1"
"github.com/prysmaticlabs/prysm/v4/time/slots"
"github.com/sirupsen/logrus"
"github.com/trailofbits/go-mutexasserts"
"go.opencensus.io/trace"
)
var processPendingBlocksPeriod = slots.DivideSlotBy(3 /* times per slot */)
const maxPeerRequest = 50
const numOfTries = 5
const maxBlocksPerSlot = 3
// processes pending blocks queue on every processPendingBlocksPeriod
func (s *Service) processPendingBlocksQueue() {
// Prevents multiple queue processing goroutines (invoked by RunEvery) from contending for data.
locker := new(sync.Mutex)
async.RunEvery(s.ctx, processPendingBlocksPeriod, func() {
// Don't process the pending blocks if genesis time has not been set. The chain is not ready.
if !s.chainIsStarted() {
return
}
locker.Lock()
if err := s.processPendingBlocks(s.ctx); err != nil {
log.WithError(err).Debug("Could not process pending blocks")
}
locker.Unlock()
})
}
// processes the block tree inside the queue
func (s *Service) processPendingBlocks(ctx context.Context) error {
ctx, span := trace.StartSpan(ctx, "processPendingBlocks")
defer span.End()
pids := s.cfg.p2p.Peers().Connected()
if err := s.validatePendingSlots(); err != nil {
return errors.Wrap(err, "could not validate pending slots")
}
ss := s.sortedPendingSlots()
var parentRoots [][32]byte
span.AddAttributes(
trace.Int64Attribute("numSlots", int64(len(ss))),
trace.Int64Attribute("numPeers", int64(len(pids))),
)
randGen := rand.NewGenerator()
for _, slot := range ss {
// process the blocks during their respective slot.
// otherwise wait for the right slot to process the block.
if slot > s.cfg.clock.CurrentSlot() {
continue
}
ctx, span := trace.StartSpan(ctx, "processPendingBlocks.InnerLoop")
span.AddAttributes(trace.Int64Attribute("slot", int64(slot))) // lint:ignore uintcast -- This conversion is OK for tracing.
s.pendingQueueLock.RLock()
bs := s.pendingBlocksInCache(slot)
// Skip if there's no block in the queue.
if len(bs) == 0 {
s.pendingQueueLock.RUnlock()
span.End()
continue
}
s.pendingQueueLock.RUnlock()
// Loop through the pending queue and mark the potential parent blocks as seen.
for _, b := range bs {
if b == nil || b.IsNil() || b.Block().IsNil() {
span.End()
continue
}
blkRoot, err := b.Block().HashTreeRoot()
if err != nil {
tracing.AnnotateError(span, err)
span.End()
return err
}
// No need to process the same block if we are already processing it
if s.cfg.chain.BlockBeingSynced(blkRoot) {
rootString := fmt.Sprintf("%#x", blkRoot)
log.WithField("BlockRoot", rootString).Info("Skipping pending block already being processed")
continue
}
inDB := s.cfg.beaconDB.HasBlock(ctx, blkRoot)
// No need to process the same block twice.
if inDB {
s.pendingQueueLock.Lock()
if err = s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil {
s.pendingQueueLock.Unlock()
return err
}
s.pendingQueueLock.Unlock()
span.End()
continue
}
s.pendingQueueLock.RLock()
inPendingQueue := s.seenPendingBlocks[b.Block().ParentRoot()]
s.pendingQueueLock.RUnlock()
keepProcessing, err := s.checkIfBlockIsBad(ctx, span, slot, b, blkRoot)
if err != nil {
return err
}
if !keepProcessing {
continue
}
parentRoot := b.Block().ParentRoot()
parentInDb := s.cfg.beaconDB.HasBlock(ctx, parentRoot)
hasPeer := len(pids) != 0
// Only request for missing parent block if it's not in beaconDB, not in pending cache
// and has peer in the peer list.
if !inPendingQueue && !parentInDb && hasPeer {
log.WithFields(logrus.Fields{
"currentSlot": b.Block().Slot(),
"parentRoot": hex.EncodeToString(bytesutil.Trunc(parentRoot[:])),
}).Debug("Requesting parent block")
parentRoots = append(parentRoots, b.Block().ParentRoot())
span.End()
continue
}
if !parentInDb {
span.End()
continue
}
err = s.validateBeaconBlock(ctx, b, blkRoot)
switch {
case errors.Is(ErrOptimisticParent, err): // Ok to continue process block with parent that is an optimistic candidate.
case err != nil:
log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not validate block")
s.setBadBlock(ctx, blkRoot)
tracing.AnnotateError(span, err)
span.End()
continue
default:
}
if err := s.cfg.chain.ReceiveBlock(ctx, b, blkRoot); err != nil {
if blockchain.IsInvalidBlock(err) {
r := blockchain.InvalidBlockRoot(err)
if r != [32]byte{} {
s.setBadBlock(ctx, r) // Setting head block as bad.
} else {
s.setBadBlock(ctx, blkRoot)
}
}
log.WithError(err).WithField("slot", b.Block().Slot()).Debug("Could not process block")
// In the next iteration of the queue, this block will be removed from
// the pending queue as it has been marked as a 'bad' block.
span.End()
continue
}
s.setSeenBlockIndexSlot(b.Block().Slot(), b.Block().ProposerIndex())
// Broadcasting the block again once a node is able to process it.
pb, err := b.Proto()
if err != nil {
log.WithError(err).Debug("Could not get protobuf block")
} else {
if err := s.cfg.p2p.Broadcast(ctx, pb); err != nil {
log.WithError(err).Debug("Could not broadcast block")
}
}
s.pendingQueueLock.Lock()
if err := s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil {
s.pendingQueueLock.Unlock()
return err
}
s.pendingQueueLock.Unlock()
log.WithFields(logrus.Fields{
"slot": slot,
"blockRoot": hex.EncodeToString(bytesutil.Trunc(blkRoot[:])),
}).Debug("Processed pending block and cleared it in cache")
span.End()
}
}
return s.sendBatchRootRequest(ctx, parentRoots, randGen)
}
func (s *Service) checkIfBlockIsBad(
ctx context.Context,
span *trace.Span,
slot primitives.Slot,
b interfaces.ReadOnlySignedBeaconBlock,
blkRoot [32]byte,
) (keepProcessing bool, err error) {
parentIsBad := s.hasBadBlock(b.Block().ParentRoot())
blockIsBad := s.hasBadBlock(blkRoot)
// Check if parent is a bad block.
if parentIsBad || blockIsBad {
// Set block as bad if its parent block is bad too.
if parentIsBad {
s.setBadBlock(ctx, blkRoot)
}
// Remove block from queue.
s.pendingQueueLock.Lock()
if err = s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil {
s.pendingQueueLock.Unlock()
return false, err
}
s.pendingQueueLock.Unlock()
span.End()
return false, nil
}
return true, nil
}
func (s *Service) sendBatchRootRequest(ctx context.Context, roots [][32]byte, randGen *rand.Rand) error {
ctx, span := trace.StartSpan(ctx, "sendBatchRootRequest")
defer span.End()
roots = dedupRoots(roots)
for i := len(roots) - 1; i >= 0; i-- {
if s.cfg.chain.BlockBeingSynced(roots[i]) {
roots = append(roots[:i], roots[i+1:]...)
}
}
if len(roots) == 0 {
return nil
}
cp := s.cfg.chain.FinalizedCheckpt()
_, bestPeers := s.cfg.p2p.Peers().BestFinalized(maxPeerRequest, cp.Epoch)
if len(bestPeers) == 0 {
return nil
}
// Randomly choose a peer to query from our best peers. If that peer cannot return
// all the requested blocks, we randomly select another peer.
pid := bestPeers[randGen.Int()%len(bestPeers)]
for i := 0; i < numOfTries; i++ {
req := p2ptypes.BeaconBlockByRootsReq(roots)
if len(roots) > int(params.BeaconNetworkConfig().MaxRequestBlocks) {
req = roots[:params.BeaconNetworkConfig().MaxRequestBlocks]
}
if err := s.sendRecentBeaconBlocksRequest(ctx, &req, pid); err != nil {
tracing.AnnotateError(span, err)
log.WithError(err).Debug("Could not send recent block request")
}
newRoots := make([][32]byte, 0, len(roots))
s.pendingQueueLock.RLock()
for _, rt := range roots {
if !s.seenPendingBlocks[rt] {
newRoots = append(newRoots, rt)
}
}
s.pendingQueueLock.RUnlock()
if len(newRoots) == 0 {
break
}
// Choosing a new peer with the leftover set of
// roots to request.
roots = newRoots
pid = bestPeers[randGen.Int()%len(bestPeers)]
}
return nil
}
func (s *Service) sortedPendingSlots() []primitives.Slot {
s.pendingQueueLock.RLock()
defer s.pendingQueueLock.RUnlock()
items := s.slotToPendingBlocks.Items()
ss := make([]primitives.Slot, 0, len(items))
for k := range items {
slot := cacheKeyToSlot(k)
ss = append(ss, slot)
}
sort.Slice(ss, func(i, j int) bool {
return ss[i] < ss[j]
})
return ss
}
// validatePendingSlots validates the pending blocks
// by their slot. If they are before the current finalized
// checkpoint, these blocks are removed from the queue.
func (s *Service) validatePendingSlots() error {
s.pendingQueueLock.Lock()
defer s.pendingQueueLock.Unlock()
oldBlockRoots := make(map[[32]byte]bool)
cp := s.cfg.chain.FinalizedCheckpt()
finalizedEpoch := cp.Epoch
if s.slotToPendingBlocks == nil {
return errors.New("slotToPendingBlocks cache can't be nil")
}
items := s.slotToPendingBlocks.Items()
for k := range items {
slot := cacheKeyToSlot(k)
blks := s.pendingBlocksInCache(slot)
for _, b := range blks {
epoch := slots.ToEpoch(slot)
// remove all descendant blocks of old blocks
if oldBlockRoots[b.Block().ParentRoot()] {
root, err := b.Block().HashTreeRoot()
if err != nil {
return err
}
oldBlockRoots[root] = true
if err := s.deleteBlockFromPendingQueue(slot, b, root); err != nil {
return err
}
continue
}
// don't process old blocks
if finalizedEpoch > 0 && epoch <= finalizedEpoch {
blkRoot, err := b.Block().HashTreeRoot()
if err != nil {
return err
}
oldBlockRoots[blkRoot] = true
if err := s.deleteBlockFromPendingQueue(slot, b, blkRoot); err != nil {
return err
}
}
}
}
return nil
}
func (s *Service) clearPendingSlots() {
s.pendingQueueLock.Lock()
defer s.pendingQueueLock.Unlock()
s.slotToPendingBlocks.Flush()
s.seenPendingBlocks = make(map[[32]byte]bool)
}
// Delete block from the list from the pending queue using the slot as key.
// Note: this helper is not thread safe.
func (s *Service) deleteBlockFromPendingQueue(slot primitives.Slot, b interfaces.ReadOnlySignedBeaconBlock, r [32]byte) error {
mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock)
blks := s.pendingBlocksInCache(slot)
if len(blks) == 0 {
return nil
}
// Defensive check to ignore nil blocks
if err := blocks.BeaconBlockIsNil(b); err != nil {
return err
}
newBlks := make([]interfaces.ReadOnlySignedBeaconBlock, 0, len(blks))
for _, blk := range blks {
blkPb, err := blk.Proto()
if err != nil {
return err
}
bPb, err := b.Proto()
if err != nil {
return err
}
if equality.DeepEqual(blkPb, bPb) {
continue
}
newBlks = append(newBlks, blk)
}
if len(newBlks) == 0 {
s.slotToPendingBlocks.Delete(slotToCacheKey(slot))
delete(s.seenPendingBlocks, r)
return nil
}
// Decrease exp time in proportion to how many blocks are still in the cache for slot key.
d := pendingBlockExpTime / time.Duration(len(newBlks))
if err := s.slotToPendingBlocks.Replace(slotToCacheKey(slot), newBlks, d); err != nil {
return err
}
delete(s.seenPendingBlocks, r)
return nil
}
// Insert block to the list in the pending queue using the slot as key.
// Note: this helper is not thread safe.
func (s *Service) insertBlockToPendingQueue(_ primitives.Slot, b interfaces.ReadOnlySignedBeaconBlock, r [32]byte) error {
mutexasserts.AssertRWMutexLocked(&s.pendingQueueLock)
if s.seenPendingBlocks[r] {
return nil
}
if err := s.addPendingBlockToCache(b); err != nil {
return err
}
s.seenPendingBlocks[r] = true
return nil
}
// This returns signed beacon blocks given input key from slotToPendingBlocks.
func (s *Service) pendingBlocksInCache(slot primitives.Slot) []interfaces.ReadOnlySignedBeaconBlock {
k := slotToCacheKey(slot)
value, ok := s.slotToPendingBlocks.Get(k)
if !ok {
return []interfaces.ReadOnlySignedBeaconBlock{}
}
blks, ok := value.([]interfaces.ReadOnlySignedBeaconBlock)
if !ok {
return []interfaces.ReadOnlySignedBeaconBlock{}
}
return blks
}
// This returns signed blob sidecar given input key from slotToPendingBlobs.
func (s *Service) pendingBlobsInCache(slot primitives.Slot) []*eth.SignedBlobSidecar {
k := slotToCacheKey(slot)
value, ok := s.slotToPendingBlobs.Get(k)
if !ok {
return []*eth.SignedBlobSidecar{}
}
bs, ok := value.([]*eth.SignedBlobSidecar)
if !ok {
log.Debug("pendingBlobsInCache: value is not of type []*eth.SignedBlobSidecar")
return []*eth.SignedBlobSidecar{}
}
return bs
}
// This adds input signed beacon block to slotToPendingBlocks cache.
func (s *Service) addPendingBlockToCache(b interfaces.ReadOnlySignedBeaconBlock) error {
if err := blocks.BeaconBlockIsNil(b); err != nil {
return err
}
blks := s.pendingBlocksInCache(b.Block().Slot())
if len(blks) >= maxBlocksPerSlot {
return nil
}
blks = append(blks, b)
k := slotToCacheKey(b.Block().Slot())
s.slotToPendingBlocks.Set(k, blks, pendingBlockExpTime)
return nil
}
// This adds blob to slotToPendingBlobs cache.
func (s *Service) addPendingBlobToCache(b *eth.SignedBlobSidecar) error {
blobs := s.pendingBlobsInCache(b.Message.Slot)
// If we already have seen the index. Ignore it.
for _, blob := range blobs {
if blob.Message.Index == b.Message.Index {
return nil
}
}
blobs = append(blobs, b)
k := slotToCacheKey(b.Message.Slot)
s.slotToPendingBlobs.Set(k, blobs, pendingBlockExpTime)
return nil
}
// This converts input string to slot.
func cacheKeyToSlot(s string) primitives.Slot {
b := []byte(s)
return bytesutil.BytesToSlotBigEndian(b)
}
// This converts input slot to a key to be used for slotToPendingBlocks cache.
func slotToCacheKey(s primitives.Slot) string {
b := bytesutil.SlotToBytesBigEndian(s)
return string(b)
}
func dedupRoots(roots [][32]byte) [][32]byte {
newRoots := make([][32]byte, 0, len(roots))
rootMap := make(map[[32]byte]bool, len(roots))
for i, r := range roots {
if rootMap[r] {
continue
}
rootMap[r] = true
newRoots = append(newRoots, roots[i])
}
return newRoots
}