prysm-pulse/beacon-chain/core/helpers/committee.go
terence tsao 956b07f5c1 Implement state transition no verify (#3048)
* Implemented state transition w/o sig verification

* ExecuteStateTransitionNoValidateStateRoot -> ExecuteStateTransitionNoVerify

* Fixed all the tests

* Extra spaces

* Gazelle

* Conflict

* Added start shard cache back

* typos
2019-07-27 00:24:42 +05:30

478 lines
18 KiB
Go

// Package helpers contains helper functions outlined in ETH2.0 spec beacon chain spec
package helpers
import (
"fmt"
"github.com/prysmaticlabs/go-bitfield"
"github.com/prysmaticlabs/go-ssz"
"github.com/prysmaticlabs/prysm/beacon-chain/cache"
pb "github.com/prysmaticlabs/prysm/proto/beacon/p2p/v1"
ethpb "github.com/prysmaticlabs/prysm/proto/eth/v1alpha1"
"github.com/prysmaticlabs/prysm/shared/params"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
)
var shuffledIndicesCache = cache.NewShuffledIndicesCache()
var startShardCache = cache.NewStartShardCache()
// CommitteeCount returns the number of crosslink committees of an epoch.
//
// Spec pseudocode definition:
// def get_committee_count(state: BeaconState, epoch: Epoch) -> uint64:
// """
// Return the number of committees at ``epoch``.
// """
// committees_per_slot = max(1, min(
// SHARD_COUNT // SLOTS_PER_EPOCH,
// len(get_active_validator_indices(state, epoch)) // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
// ))
// return committees_per_slot * SLOTS_PER_EPOCH
func CommitteeCount(state *pb.BeaconState, epoch uint64) (uint64, error) {
minCommitteePerSlot := uint64(1)
// Max committee count per slot will be 0 when shard count is less than epoch length, this
// covers the special case to ensure there's always 1 max committee count per slot.
var committeeSizesPerSlot = minCommitteePerSlot
if params.BeaconConfig().ShardCount/params.BeaconConfig().SlotsPerEpoch > minCommitteePerSlot {
committeeSizesPerSlot = params.BeaconConfig().ShardCount / params.BeaconConfig().SlotsPerEpoch
}
count, err := ActiveValidatorCount(state, epoch)
if err != nil {
return 0, fmt.Errorf("could not get active count: %v", err)
}
var currCommitteePerSlot = count / params.BeaconConfig().SlotsPerEpoch / params.BeaconConfig().TargetCommitteeSize
if currCommitteePerSlot > committeeSizesPerSlot {
return committeeSizesPerSlot * params.BeaconConfig().SlotsPerEpoch, nil
}
if currCommitteePerSlot < 1 {
return minCommitteePerSlot * params.BeaconConfig().SlotsPerEpoch, nil
}
return currCommitteePerSlot * params.BeaconConfig().SlotsPerEpoch, nil
}
// CrosslinkCommittee returns the crosslink committee of a given epoch.
//
// Spec pseudocode definition:
// def get_crosslink_committee(state: BeaconState, epoch: Epoch, shard: Shard) -> Sequence[ValidatorIndex]:
// """
// Return the crosslink committee at ``epoch`` for ``shard``.
// """
// return compute_committee(
// indices=get_active_validator_indices(state, epoch),
// seed=get_seed(state, epoch),
// index=(shard + SHARD_COUNT - get_start_shard(state, epoch)) % SHARD_COUNT,
// count=get_committee_count(state, epoch),
// )
func CrosslinkCommittee(state *pb.BeaconState, epoch uint64, shard uint64) ([]uint64, error) {
seed, err := Seed(state, epoch)
if err != nil {
return nil, fmt.Errorf("could not get seed: %v", err)
}
indices, err := ActiveValidatorIndices(state, epoch)
if err != nil {
return nil, fmt.Errorf("could not get active indices: %v", err)
}
startShard, err := StartShard(state, epoch)
if err != nil {
return nil, fmt.Errorf("could not get start shard: %v", err)
}
shardCount := params.BeaconConfig().ShardCount
currentShard := (shard + shardCount - startShard) % shardCount
committeeCount, err := CommitteeCount(state, epoch)
if err != nil {
return nil, fmt.Errorf("could not get committee count: %v", err)
}
return ComputeCommittee(indices, seed, currentShard, committeeCount)
}
// ComputeCommittee returns the requested shuffled committee out of the total committees using
// validator indices and seed.
//
// Spec pseudocode definition:
// def compute_committee(indices: Sequence[ValidatorIndex],
// seed: Hash,
// index: uint64,
// count: uint64) -> Sequence[ValidatorIndex]:
// """
// Return the committee corresponding to ``indices``, ``seed``, ``index``, and committee ``count``.
// """
// start = (len(indices) * index) // count
// end = (len(indices) * (index + 1)) // count
// return [indices[compute_shuffled_index(ValidatorIndex(i), len(indices), seed)] for i in range(start, end)
func ComputeCommittee(
validatorIndices []uint64,
seed [32]byte,
index uint64,
totalCommittees uint64,
) ([]uint64, error) {
validatorCount := uint64(len(validatorIndices))
start := SplitOffset(validatorCount, totalCommittees, index)
end := SplitOffset(validatorCount, totalCommittees, index+1)
// Use cached shuffled indices list if we have seen the seed before.
cachedShuffledList, err := shuffledIndicesCache.IndicesByIndexSeed(index, seed[:])
if err != nil {
return nil, err
}
if cachedShuffledList != nil {
return cachedShuffledList, nil
}
// Save the shuffled indices in cache, this is only needed once per epoch or once per new shard index.
shuffledIndices := make([]uint64, end-start)
for i := start; i < end; i++ {
permutedIndex, err := ShuffledIndex(i, validatorCount, seed)
if err != nil {
return []uint64{}, fmt.Errorf("could not get shuffled index at index %d: %v", i, err)
}
shuffledIndices[i-start] = validatorIndices[permutedIndex]
}
if err := shuffledIndicesCache.AddShuffledValidatorList(&cache.IndicesByIndexSeed{
Index: index,
Seed: seed[:],
ShuffledIndices: shuffledIndices,
}); err != nil {
return []uint64{}, fmt.Errorf("could not add shuffled indices list to cache: %v", err)
}
return shuffledIndices, nil
}
// AttestingIndices returns the attesting participants indices from the attestation data.
//
// Spec pseudocode definition:
// def get_attesting_indices(state: BeaconState,
// data: AttestationData,
// bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]) -> Set[ValidatorIndex]:
// """
// Return the set of attesting indices corresponding to ``data`` and ``bits``.
// """
// committee = get_crosslink_committee(state, data.target.epoch, data.crosslink.shard)
// return set(index for i, index in enumerate(committee) if bits[i])
func AttestingIndices(state *pb.BeaconState, data *ethpb.AttestationData, bf bitfield.Bitfield) ([]uint64, error) {
committee, err := CrosslinkCommittee(state, data.Target.Epoch, data.Crosslink.Shard)
if err != nil {
return nil, fmt.Errorf("could not get committee: %v", err)
}
indices := make([]uint64, 0, len(committee))
indicesSet := make(map[uint64]bool)
for i, idx := range committee {
if !indicesSet[idx] {
if bf.BitAt(uint64(i)) {
indices = append(indices, idx)
}
}
indicesSet[idx] = true
}
return indices, nil
}
// VerifyBitfield validates a bitfield with a given committee size.
func VerifyBitfield(bf bitfield.Bitfield, committeeSize uint64) (bool, error) {
if bf.Len() != committeeSize {
return false, fmt.Errorf(
"wanted participants bitfield length %d, got: %d",
committeeSize,
bf.Len())
}
return true, nil
}
// CommitteeAssignment is used to query committee assignment from
// current and previous epoch.
//
// Spec pseudocode definition:
// def get_committee_assignment(state: BeaconState,
// epoch: Epoch,
// validator_index: ValidatorIndex) -> Optional[Tuple[Sequence[ValidatorIndex], Shard, Slot]]:
// """
// Return the committee assignment in the ``epoch`` for ``validator_index``.
// ``assignment`` returned is a tuple of the following form:
// * ``assignment[0]`` is the list of validators in the committee
// * ``assignment[1]`` is the shard to which the committee is assigned
// * ``assignment[2]`` is the slot at which the committee is assigned
// Return None if no assignment.
// """
// next_epoch = get_current_epoch(state) + 1
// assert epoch <= next_epoch
//
// committees_per_slot = get_committee_count(state, epoch) // SLOTS_PER_EPOCH
// start_slot = compute_start_slot_of_epoch(epoch)
// for slot in range(start_slot, start_slot + SLOTS_PER_EPOCH):
// offset = committees_per_slot * (slot % SLOTS_PER_EPOCH)
// slot_start_shard = (get_start_shard(state, epoch) + offset) % SHARD_COUNT
// for i in range(committees_per_slot):
// shard = Shard((slot_start_shard + i) % SHARD_COUNT)
// committee = get_crosslink_committee(state, epoch, shard)
// if validator_index in committee:
// return committee, shard, Slot(slot)
// return None
func CommitteeAssignment(
state *pb.BeaconState,
epoch uint64,
validatorIndex uint64) ([]uint64, uint64, uint64, bool, error) {
if epoch > NextEpoch(state) {
return nil, 0, 0, false, fmt.Errorf(
"epoch %d can't be greater than next epoch %d",
epoch, NextEpoch(state))
}
committeeCount, err := CommitteeCount(state, epoch)
if err != nil {
return nil, 0, 0, false, fmt.Errorf("could not get committee count: %v", err)
}
committeesPerSlot := committeeCount / params.BeaconConfig().SlotsPerEpoch
epochStartShard, err := StartShard(state, epoch)
if err != nil {
return nil, 0, 0, false, fmt.Errorf(
"could not get epoch start shard: %v", err)
}
startSlot := StartSlot(epoch)
for slot := startSlot; slot < startSlot+params.BeaconConfig().SlotsPerEpoch; slot++ {
offset := committeesPerSlot * (slot % params.BeaconConfig().SlotsPerEpoch)
slotStatShard := (epochStartShard + offset) % params.BeaconConfig().ShardCount
for i := uint64(0); i < committeesPerSlot; i++ {
shard := (slotStatShard + i) % params.BeaconConfig().ShardCount
committee, err := CrosslinkCommittee(state, epoch, shard)
if err != nil {
return nil, 0, 0, false, fmt.Errorf(
"could not get crosslink committee: %v", err)
}
for _, index := range committee {
if validatorIndex == index {
state.Slot = slot
proposerIndex, err := BeaconProposerIndex(state)
if err != nil {
return nil, 0, 0, false, fmt.Errorf(
"could not check proposer index: %v", err)
}
isProposer := proposerIndex == validatorIndex
return committee, shard, slot, isProposer, nil
}
}
}
}
return []uint64{}, 0, 0, false, status.Error(codes.NotFound, "validator not found in assignments")
}
// ShardDelta returns the minimum number of shards get processed in one epoch.
//
// Note: if you already have the committee count,
// use ShardDeltaFromCommitteeCount as CommitteeCount (specifically
// ActiveValidatorCount) iterates over the entire validator set.
//
// Spec pseudocode definition:
// def get_shard_delta(state: BeaconState, epoch: Epoch) -> uint64:
// """
// Return the number of shards to increment ``state.start_shard`` at ``epoch``.
// """
// return min(get_committee_count(state, epoch), SHARD_COUNT - SHARD_COUNT // SLOTS_PER_EPOCH)
func ShardDelta(beaconState *pb.BeaconState, epoch uint64) (uint64, error) {
committeeCount, err := CommitteeCount(beaconState, epoch)
if err != nil {
return 0, fmt.Errorf("could not get committee count: %v", err)
}
return ShardDeltaFromCommitteeCount(committeeCount), nil
}
// ShardDeltaFromCommitteeCount returns the number of shards that get processed
// in one epoch. This method is the inner logic of ShardDelta.
// Returns the minimum of the committeeCount and maximum shard delta which is
// defined as SHARD_COUNT - SHARD_COUNT // SLOTS_PER_EPOCH.
func ShardDeltaFromCommitteeCount(committeeCount uint64) uint64 {
shardCount := params.BeaconConfig().ShardCount
maxShardDelta := shardCount - shardCount/params.BeaconConfig().SlotsPerEpoch
if committeeCount < maxShardDelta {
return committeeCount
}
return maxShardDelta
}
// StartShard returns the start shard used to process crosslink
// of a given epoch. The start shard is cached using epoch as key,
// it gets rewritten where there's a reorg or a new finalized block.
//
// Spec pseudocode definition:
// def get_start_shard(state: BeaconState, epoch: Epoch) -> Shard:
// """
// Return the start shard of the 0th committee at ``epoch``.
// """
// assert epoch <= get_current_epoch(state) + 1
// check_epoch = Epoch(get_current_epoch(state) + 1)
// shard = Shard((state.start_shard + get_shard_delta(state, get_current_epoch(state))) % SHARD_COUNT)
// while check_epoch > epoch:
// check_epoch -= Epoch(1)
// shard = Shard((shard + SHARD_COUNT - get_shard_delta(state, check_epoch)) % SHARD_COUNT)
// return shard
func StartShard(state *pb.BeaconState, epoch uint64) (uint64, error) {
startShard, err := startShardCache.StartShardInEpoch(epoch)
if err != nil {
return 0, fmt.Errorf("could not retrieve start shard from cache: %v", err)
}
if startShard != params.BeaconConfig().FarFutureEpoch {
return startShard, nil
}
currentEpoch := CurrentEpoch(state)
checkEpoch := currentEpoch + 1
if epoch > checkEpoch {
return 0, fmt.Errorf("epoch %d can't be greater than %d",
epoch, checkEpoch)
}
delta, err := ShardDelta(state, currentEpoch)
if err != nil {
return 0, fmt.Errorf("could not get shard delta: %v", err)
}
startShard = (state.StartShard + delta) % params.BeaconConfig().ShardCount
for checkEpoch > epoch {
checkEpoch--
d, err := ShardDelta(state, checkEpoch)
if err != nil {
return 0, fmt.Errorf("could not get shard delta: %v", err)
}
startShard = (startShard + params.BeaconConfig().ShardCount - d) % params.BeaconConfig().ShardCount
}
if err := startShardCache.AddStartShard(&cache.StartShardByEpoch{
Epoch: epoch,
StartShard: startShard,
}); err != nil {
return 0, fmt.Errorf("could not save start shard for cache: %v", err)
}
return startShard, nil
}
// VerifyAttestationBitfield verifies that an attestations bitfield is valid in respect
// to the committees at that slot.
func VerifyAttestationBitfield(bState *pb.BeaconState, att *ethpb.Attestation) (bool, error) {
committee, err := CrosslinkCommittee(bState, att.Data.Target.Epoch, att.Data.Crosslink.Shard)
if err != nil {
return false, fmt.Errorf("could not retrieve crosslink committees at slot: %v", err)
}
if committee == nil {
return false, fmt.Errorf("no committee exist for shard in the attestation")
}
return VerifyBitfield(att.AggregationBits, uint64(len(committee)))
}
// CompactCommitteesRoot returns the index root of a given epoch.
//
// Spec pseudocode definition:
// def get_compact_committees_root(state: BeaconState, epoch: Epoch) -> Hash:
// """
// Return the compact committee root at ``epoch``.
// """
// committees = [CompactCommittee() for _ in range(SHARD_COUNT)]
// start_shard = get_epoch_start_shard(state, epoch)
// for committee_number in range(get_epoch_committee_count(state, epoch)):
// shard = Shard((start_shard + committee_number) % SHARD_COUNT)
// for index in get_crosslink_committee(state, epoch, shard):
// validator = state.validators[index]
// committees[shard].pubkeys.append(validator.pubkey)
// compact_balance = validator.effective_balance // EFFECTIVE_BALANCE_INCREMENT
// # `index` (top 6 bytes) + `slashed` (16th bit) + `compact_balance` (bottom 15 bits)
// compact_validator = uint64((index << 16) + (validator.slashed << 15) + compact_balance)
// committees[shard].compact_validators.append(compact_validator)
// return hash_tree_root(Vector[CompactCommittee, SHARD_COUNT](committees))
func CompactCommitteesRoot(state *pb.BeaconState, epoch uint64) ([32]byte, error) {
shardCount := params.BeaconConfig().ShardCount
switch shardCount {
case 1024:
compactCommArray := [1024]*pb.CompactCommittee{}
for i := range compactCommArray {
compactCommArray[i] = &pb.CompactCommittee{}
}
comCount, err := CommitteeCount(state, epoch)
if err != nil {
return [32]byte{}, err
}
startShard, err := StartShard(state, epoch)
if err != nil {
return [32]byte{}, err
}
for i := uint64(0); i < comCount; i++ {
shard := (startShard + i) % shardCount
crossComm, err := CrosslinkCommittee(state, epoch, shard)
if err != nil {
return [32]byte{}, err
}
for _, index := range crossComm {
validator := state.Validators[index]
compactCommArray[shard].Pubkeys = append(compactCommArray[shard].Pubkeys, validator.PublicKey)
compactValidator := compressValidator(validator, index)
compactCommArray[shard].CompactValidators = append(compactCommArray[shard].CompactValidators, compactValidator)
}
}
return ssz.HashTreeRoot(compactCommArray)
case 8:
compactCommArray := [8]*pb.CompactCommittee{}
for i := range compactCommArray {
compactCommArray[i] = &pb.CompactCommittee{}
}
comCount, err := CommitteeCount(state, epoch)
if err != nil {
return [32]byte{}, err
}
startShard, err := StartShard(state, epoch)
if err != nil {
return [32]byte{}, err
}
for i := uint64(0); i < comCount; i++ {
shard := (startShard + i) % shardCount
crossComm, err := CrosslinkCommittee(state, epoch, shard)
if err != nil {
return [32]byte{}, err
}
for _, index := range crossComm {
validator := state.Validators[index]
compactCommArray[shard].Pubkeys = append(compactCommArray[shard].Pubkeys, validator.PublicKey)
compactValidator := compressValidator(validator, index)
compactCommArray[shard].CompactValidators = append(compactCommArray[shard].CompactValidators, compactValidator)
}
}
return ssz.HashTreeRoot(compactCommArray)
default:
return [32]byte{}, fmt.Errorf("expected minimal or mainnet config shard count, received %d", shardCount)
}
}
// compressValidator compacts all the validator data such as validator index, slashing info and balance
// into a single uint64 field.
//
// Spec reference:
// # `index` (top 6 bytes) + `slashed` (16th bit) + `compact_balance` (bottom 15 bits)
// compact_validator = uint64((index << 16) + (validator.slashed << 15) + compact_balance)
func compressValidator(validator *ethpb.Validator, idx uint64) uint64 {
compactBalance := validator.EffectiveBalance / params.BeaconConfig().EffectiveBalanceIncrement
// index (top 6 bytes) + slashed (16th bit) + compact_balance (bottom 15 bits)
compactIndex := idx << 16
var slashedBit uint64
if validator.Slashed {
slashedBit = 1 << 15
}
// Clear all bits except last 15.
compactBalance &= 0x7FFF // 0b01111111 0b11111111
compactValidator := compactIndex | uint64(slashedBit|compactBalance)
return compactValidator
}