mirror of
https://gitlab.com/pulsechaincom/prysm-pulse.git
synced 2024-12-24 12:27:18 +00:00
5569a68452
* Value assigned to a variable is never read before being overwritten * The result of append is not used anywhere * Suspicious assignment of range-loop vars detected * Unused method receiver detected * Revert "Auxiliary commit to revert individual files from 54edcb445484a2e5d79612e19af8e949b8861253" This reverts commit bbd1e1beabf7b0c5cfc4f514dcc820062ad6c063. * Method modifies receiver * Fix test * Duplicate imports detected * Incorrectly formatted error string * Types of function parameters can be combined * One more "Unused method receiver detected" * Unused parameter detected in function
664 lines
20 KiB
Go
664 lines
20 KiB
Go
package protoarray
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"fmt"
|
|
|
|
"github.com/pkg/errors"
|
|
types "github.com/prysmaticlabs/eth2-types"
|
|
"github.com/prysmaticlabs/prysm/config/params"
|
|
"go.opencensus.io/trace"
|
|
)
|
|
|
|
// This defines the minimal number of block nodes that can be in the tree
|
|
// before getting pruned upon new finalization.
|
|
const defaultPruneThreshold = 256
|
|
|
|
// This tracks the last reported head root. Used for metrics.
|
|
var lastHeadRoot [32]byte
|
|
|
|
// New initializes a new fork choice store.
|
|
func New(justifiedEpoch, finalizedEpoch types.Epoch, finalizedRoot [32]byte) *ForkChoice {
|
|
s := &Store{
|
|
justifiedEpoch: justifiedEpoch,
|
|
finalizedEpoch: finalizedEpoch,
|
|
finalizedRoot: finalizedRoot,
|
|
nodes: make([]*Node, 0),
|
|
nodesIndices: make(map[[32]byte]uint64),
|
|
canonicalNodes: make(map[[32]byte]bool),
|
|
pruneThreshold: defaultPruneThreshold,
|
|
}
|
|
|
|
b := make([]uint64, 0)
|
|
v := make([]Vote, 0)
|
|
|
|
return &ForkChoice{store: s, balances: b, votes: v}
|
|
}
|
|
|
|
// Head returns the head root from fork choice store.
|
|
// It firsts computes validator's balance changes then recalculates block tree from leaves to root.
|
|
func (f *ForkChoice) Head(
|
|
ctx context.Context,
|
|
justifiedEpoch types.Epoch,
|
|
justifiedRoot [32]byte,
|
|
justifiedStateBalances []uint64,
|
|
finalizedEpoch types.Epoch,
|
|
) ([32]byte, error) {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.Head")
|
|
defer span.End()
|
|
f.votesLock.Lock()
|
|
defer f.votesLock.Unlock()
|
|
|
|
calledHeadCount.Inc()
|
|
|
|
newBalances := justifiedStateBalances
|
|
|
|
// Using the write lock here because `updateCanonicalNodes` that gets called subsequently requires a write operation.
|
|
f.store.nodesLock.Lock()
|
|
defer f.store.nodesLock.Unlock()
|
|
deltas, newVotes, err := computeDeltas(ctx, f.store.nodesIndices, f.votes, f.balances, newBalances)
|
|
if err != nil {
|
|
return [32]byte{}, errors.Wrap(err, "Could not compute deltas")
|
|
}
|
|
f.votes = newVotes
|
|
|
|
if err := f.store.applyWeightChanges(ctx, justifiedEpoch, finalizedEpoch, deltas); err != nil {
|
|
return [32]byte{}, errors.Wrap(err, "Could not apply score changes")
|
|
}
|
|
f.balances = newBalances
|
|
|
|
return f.store.head(ctx, justifiedRoot)
|
|
}
|
|
|
|
// ProcessAttestation processes attestation for vote accounting, it iterates around validator indices
|
|
// and update their votes accordingly.
|
|
func (f *ForkChoice) ProcessAttestation(ctx context.Context, validatorIndices []uint64, blockRoot [32]byte, targetEpoch types.Epoch) {
|
|
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessAttestation")
|
|
defer span.End()
|
|
f.votesLock.Lock()
|
|
defer f.votesLock.Unlock()
|
|
|
|
for _, index := range validatorIndices {
|
|
// Validator indices will grow the vote cache.
|
|
for index >= uint64(len(f.votes)) {
|
|
f.votes = append(f.votes, Vote{currentRoot: params.BeaconConfig().ZeroHash, nextRoot: params.BeaconConfig().ZeroHash})
|
|
}
|
|
|
|
// Newly allocated vote if the root fields are untouched.
|
|
newVote := f.votes[index].nextRoot == params.BeaconConfig().ZeroHash &&
|
|
f.votes[index].currentRoot == params.BeaconConfig().ZeroHash
|
|
|
|
// Vote gets updated if it's newly allocated or high target epoch.
|
|
if newVote || targetEpoch > f.votes[index].nextEpoch {
|
|
f.votes[index].nextEpoch = targetEpoch
|
|
f.votes[index].nextRoot = blockRoot
|
|
}
|
|
}
|
|
|
|
processedAttestationCount.Inc()
|
|
}
|
|
|
|
// ProcessBlock processes a new block by inserting it to the fork choice store.
|
|
func (f *ForkChoice) ProcessBlock(
|
|
ctx context.Context,
|
|
slot types.Slot,
|
|
blockRoot, parentRoot, graffiti [32]byte,
|
|
justifiedEpoch, finalizedEpoch types.Epoch,
|
|
) error {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.ProcessBlock")
|
|
defer span.End()
|
|
|
|
return f.store.insert(ctx, slot, blockRoot, parentRoot, graffiti, justifiedEpoch, finalizedEpoch)
|
|
}
|
|
|
|
// Prune prunes the fork choice store with the new finalized root. The store is only pruned if the input
|
|
// root is different than the current store finalized root, and the number of the store has met prune threshold.
|
|
func (f *ForkChoice) Prune(ctx context.Context, finalizedRoot [32]byte) error {
|
|
return f.store.prune(ctx, finalizedRoot)
|
|
}
|
|
|
|
// Nodes returns the copied list of block nodes in the fork choice store.
|
|
func (f *ForkChoice) Nodes() []*Node {
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
cpy := make([]*Node, len(f.store.nodes))
|
|
copy(cpy, f.store.nodes)
|
|
return cpy
|
|
}
|
|
|
|
// Store returns the fork choice store object which contains all the information regarding proto array fork choice.
|
|
func (f *ForkChoice) Store() *Store {
|
|
f.store.nodesLock.Lock()
|
|
defer f.store.nodesLock.Unlock()
|
|
return f.store
|
|
}
|
|
|
|
// Node returns the copied node in the fork choice store.
|
|
func (f *ForkChoice) Node(root [32]byte) *Node {
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
index, ok := f.store.nodesIndices[root]
|
|
if !ok {
|
|
return nil
|
|
}
|
|
|
|
return copyNode(f.store.nodes[index])
|
|
}
|
|
|
|
// HasNode returns true if the node exists in fork choice store,
|
|
// false else wise.
|
|
func (f *ForkChoice) HasNode(root [32]byte) bool {
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
_, ok := f.store.nodesIndices[root]
|
|
return ok
|
|
}
|
|
|
|
// HasParent returns true if the node parent exists in fork choice store,
|
|
// false else wise.
|
|
func (f *ForkChoice) HasParent(root [32]byte) bool {
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
i, ok := f.store.nodesIndices[root]
|
|
if !ok || i >= uint64(len(f.store.nodes)) {
|
|
return false
|
|
}
|
|
|
|
return f.store.nodes[i].parent != NonExistentNode
|
|
}
|
|
|
|
// IsCanonical returns true if the given root is part of the canonical chain.
|
|
func (f *ForkChoice) IsCanonical(root [32]byte) bool {
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
return f.store.canonicalNodes[root]
|
|
}
|
|
|
|
// AncestorRoot returns the ancestor root of input block root at a given slot.
|
|
func (f *ForkChoice) AncestorRoot(ctx context.Context, root [32]byte, slot types.Slot) ([]byte, error) {
|
|
ctx, span := trace.StartSpan(ctx, "protoArray.AncestorRoot")
|
|
defer span.End()
|
|
|
|
f.store.nodesLock.RLock()
|
|
defer f.store.nodesLock.RUnlock()
|
|
|
|
i, ok := f.store.nodesIndices[root]
|
|
if !ok {
|
|
return nil, errors.New("node does not exist")
|
|
}
|
|
if i >= uint64(len(f.store.nodes)) {
|
|
return nil, errors.New("node index out of range")
|
|
}
|
|
|
|
for f.store.nodes[i].slot > slot {
|
|
if ctx.Err() != nil {
|
|
return nil, ctx.Err()
|
|
}
|
|
|
|
i = f.store.nodes[i].parent
|
|
|
|
if i >= uint64(len(f.store.nodes)) {
|
|
return nil, errors.New("node index out of range")
|
|
}
|
|
}
|
|
|
|
return f.store.nodes[i].root[:], nil
|
|
}
|
|
|
|
// PruneThreshold of fork choice store.
|
|
func (s *Store) PruneThreshold() uint64 {
|
|
return s.pruneThreshold
|
|
}
|
|
|
|
// JustifiedEpoch of fork choice store.
|
|
func (s *Store) JustifiedEpoch() types.Epoch {
|
|
return s.justifiedEpoch
|
|
}
|
|
|
|
// FinalizedEpoch of fork choice store.
|
|
func (s *Store) FinalizedEpoch() types.Epoch {
|
|
return s.finalizedEpoch
|
|
}
|
|
|
|
// Nodes of fork choice store.
|
|
func (s *Store) Nodes() []*Node {
|
|
s.nodesLock.RLock()
|
|
defer s.nodesLock.RUnlock()
|
|
return s.nodes
|
|
}
|
|
|
|
// NodesIndices of fork choice store.
|
|
func (s *Store) NodesIndices() map[[32]byte]uint64 {
|
|
s.nodesLock.RLock()
|
|
defer s.nodesLock.RUnlock()
|
|
return s.nodesIndices
|
|
}
|
|
|
|
// head starts from justified root and then follows the best descendant links
|
|
// to find the best block for head.
|
|
func (s *Store) head(ctx context.Context, justifiedRoot [32]byte) ([32]byte, error) {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.head")
|
|
defer span.End()
|
|
|
|
// Justified index has to be valid in node indices map, and can not be out of bound.
|
|
justifiedIndex, ok := s.nodesIndices[justifiedRoot]
|
|
if !ok {
|
|
return [32]byte{}, errUnknownJustifiedRoot
|
|
}
|
|
if justifiedIndex >= uint64(len(s.nodes)) {
|
|
return [32]byte{}, errInvalidJustifiedIndex
|
|
}
|
|
|
|
justifiedNode := s.nodes[justifiedIndex]
|
|
bestDescendantIndex := justifiedNode.bestDescendant
|
|
// If the justified node doesn't have a best descendent,
|
|
// the best node is itself.
|
|
if bestDescendantIndex == NonExistentNode {
|
|
bestDescendantIndex = justifiedIndex
|
|
}
|
|
if bestDescendantIndex >= uint64(len(s.nodes)) {
|
|
return [32]byte{}, errInvalidBestDescendantIndex
|
|
}
|
|
|
|
bestNode := s.nodes[bestDescendantIndex]
|
|
|
|
if !s.viableForHead(bestNode) {
|
|
return [32]byte{}, fmt.Errorf("head at slot %d with weight %d is not eligible, finalizedEpoch %d != %d, justifiedEpoch %d != %d",
|
|
bestNode.slot, bestNode.weight/10e9, bestNode.finalizedEpoch, s.finalizedEpoch, bestNode.justifiedEpoch, s.justifiedEpoch)
|
|
}
|
|
|
|
// Update metrics.
|
|
if bestNode.root != lastHeadRoot {
|
|
headChangesCount.Inc()
|
|
headSlotNumber.Set(float64(bestNode.slot))
|
|
lastHeadRoot = bestNode.root
|
|
}
|
|
|
|
// Update canonical mapping given the head root.
|
|
if err := s.updateCanonicalNodes(ctx, bestNode.root); err != nil {
|
|
return [32]byte{}, err
|
|
}
|
|
|
|
return bestNode.root, nil
|
|
}
|
|
|
|
// updateCanonicalNodes updates the canonical nodes mapping given the input block root.
|
|
func (s *Store) updateCanonicalNodes(ctx context.Context, root [32]byte) error {
|
|
ctx, span := trace.StartSpan(ctx, "protoArrayForkChoice.updateCanonicalNodes")
|
|
defer span.End()
|
|
|
|
// Set the input node to canonical.
|
|
s.canonicalNodes[root] = true
|
|
|
|
// Get the input's parent node index.
|
|
i := s.nodesIndices[root]
|
|
n := s.nodes[i]
|
|
p := n.parent
|
|
|
|
for p != NonExistentNode {
|
|
if ctx.Err() != nil {
|
|
return ctx.Err()
|
|
}
|
|
|
|
// Get the parent node, if the node is already in canonical mapping,
|
|
// we can be sure rest of the ancestors are canonical. Exit early.
|
|
n = s.nodes[p]
|
|
if s.canonicalNodes[n.root] {
|
|
break
|
|
}
|
|
|
|
// Set parent node to canonical. Repeat until parent node index is undefined.
|
|
s.canonicalNodes[n.root] = true
|
|
p = n.parent
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// insert registers a new block node to the fork choice store's node list.
|
|
// It then updates the new node's parent with best child and descendant node.
|
|
func (s *Store) insert(ctx context.Context,
|
|
slot types.Slot,
|
|
root, parent, graffiti [32]byte,
|
|
justifiedEpoch, finalizedEpoch types.Epoch) error {
|
|
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.insert")
|
|
defer span.End()
|
|
|
|
s.nodesLock.Lock()
|
|
defer s.nodesLock.Unlock()
|
|
|
|
// Return if the block has been inserted into Store before.
|
|
if _, ok := s.nodesIndices[root]; ok {
|
|
return nil
|
|
}
|
|
|
|
index := uint64(len(s.nodes))
|
|
parentIndex, ok := s.nodesIndices[parent]
|
|
// Mark genesis block's parent as non existent.
|
|
if !ok {
|
|
parentIndex = NonExistentNode
|
|
}
|
|
|
|
n := &Node{
|
|
slot: slot,
|
|
root: root,
|
|
graffiti: graffiti,
|
|
parent: parentIndex,
|
|
justifiedEpoch: justifiedEpoch,
|
|
finalizedEpoch: finalizedEpoch,
|
|
bestChild: NonExistentNode,
|
|
bestDescendant: NonExistentNode,
|
|
weight: 0,
|
|
}
|
|
|
|
s.nodesIndices[root] = index
|
|
s.nodes = append(s.nodes, n)
|
|
|
|
// Update parent with the best child and descendent only if it's available.
|
|
if n.parent != NonExistentNode {
|
|
if err := s.updateBestChildAndDescendant(parentIndex, index); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Update metrics.
|
|
processedBlockCount.Inc()
|
|
nodeCount.Set(float64(len(s.nodes)))
|
|
|
|
return nil
|
|
}
|
|
|
|
// applyWeightChanges iterates backwards through the nodes in store. It checks all nodes parent
|
|
// and its best child. For each node, it updates the weight with input delta and
|
|
// back propagate the nodes delta to its parents delta. After scoring changes,
|
|
// the best child is then updated along with best descendant.
|
|
func (s *Store) applyWeightChanges(ctx context.Context, justifiedEpoch, finalizedEpoch types.Epoch, delta []int) error {
|
|
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.applyWeightChanges")
|
|
defer span.End()
|
|
|
|
// The length of the nodes can not be different than length of the delta.
|
|
if len(s.nodes) != len(delta) {
|
|
return errInvalidDeltaLength
|
|
}
|
|
|
|
// Update the justified / finalized epochs in store if necessary.
|
|
if s.justifiedEpoch != justifiedEpoch || s.finalizedEpoch != finalizedEpoch {
|
|
s.justifiedEpoch = justifiedEpoch
|
|
s.finalizedEpoch = finalizedEpoch
|
|
}
|
|
|
|
// Iterate backwards through all index to node in store.
|
|
for i := len(s.nodes) - 1; i >= 0; i-- {
|
|
n := s.nodes[i]
|
|
|
|
// There is no need to adjust the balances or manage parent of the zero hash, it
|
|
// is an alias to the genesis block.
|
|
if n.root == params.BeaconConfig().ZeroHash {
|
|
continue
|
|
}
|
|
|
|
nodeDelta := delta[i]
|
|
|
|
if nodeDelta < 0 {
|
|
// A node's weight can not be negative but the delta can be negative.
|
|
if int(n.weight)+nodeDelta < 0 {
|
|
n.weight = 0
|
|
} else {
|
|
// Absolute value of node delta.
|
|
d := nodeDelta
|
|
if nodeDelta < 0 {
|
|
d *= -1
|
|
}
|
|
// Subtract node's weight.
|
|
n.weight -= uint64(d)
|
|
}
|
|
} else {
|
|
// Add node's weight.
|
|
n.weight += uint64(nodeDelta)
|
|
}
|
|
|
|
s.nodes[i] = n
|
|
|
|
// Update parent's best child and descendent if the node has a known parent.
|
|
if n.parent != NonExistentNode {
|
|
// Protection against node parent index out of bound. This should not happen.
|
|
if int(n.parent) >= len(delta) {
|
|
return errInvalidParentDelta
|
|
}
|
|
// Back propagate the nodes delta to its parent.
|
|
delta[n.parent] += nodeDelta
|
|
}
|
|
}
|
|
|
|
for i := len(s.nodes) - 1; i >= 0; i-- {
|
|
n := s.nodes[i]
|
|
if n.parent != NonExistentNode {
|
|
if int(n.parent) >= len(delta) {
|
|
return errInvalidParentDelta
|
|
}
|
|
if err := s.updateBestChildAndDescendant(n.parent, uint64(i)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// updateBestChildAndDescendant updates parent node's best child and descendent.
|
|
// It looks at input parent node and input child node and potentially modifies parent's best
|
|
// child and best descendent indices.
|
|
// There are four outcomes:
|
|
// 1.) The child is already the best child but it's now invalid due to a FFG change and should be removed.
|
|
// 2.) The child is already the best child and the parent is updated with the new best descendant.
|
|
// 3.) The child is not the best child but becomes the best child.
|
|
// 4.) The child is not the best child and does not become best child.
|
|
func (s *Store) updateBestChildAndDescendant(parentIndex, childIndex uint64) error {
|
|
|
|
// Protection against parent index out of bound, this should not happen.
|
|
if parentIndex >= uint64(len(s.nodes)) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
parent := s.nodes[parentIndex]
|
|
|
|
// Protection against child index out of bound, again this should not happen.
|
|
if childIndex >= uint64(len(s.nodes)) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
child := s.nodes[childIndex]
|
|
|
|
// Is the child viable to become head? Based on justification and finalization rules.
|
|
childLeadsToViableHead, err := s.leadsToViableHead(child)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Define 3 variables for the 3 outcomes mentioned above. This is to
|
|
// set `parent.bestChild` and `parent.bestDescendant` to. These
|
|
// aliases are to assist readability.
|
|
changeToNone := []uint64{NonExistentNode, NonExistentNode}
|
|
bestDescendant := child.bestDescendant
|
|
if bestDescendant == NonExistentNode {
|
|
bestDescendant = childIndex
|
|
}
|
|
changeToChild := []uint64{childIndex, bestDescendant}
|
|
noChange := []uint64{parent.bestChild, parent.bestDescendant}
|
|
var newParentChild []uint64
|
|
|
|
if parent.bestChild != NonExistentNode {
|
|
if parent.bestChild == childIndex && !childLeadsToViableHead {
|
|
// If the child is already the best child of the parent but it's not viable for head,
|
|
// we should remove it. (Outcome 1)
|
|
newParentChild = changeToNone
|
|
} else if parent.bestChild == childIndex {
|
|
// If the child is already the best child of the parent, set it again to ensure best
|
|
// descendent of the parent is updated. (Outcome 2)
|
|
newParentChild = changeToChild
|
|
} else {
|
|
// Protection against parent's best child going out of bound.
|
|
if parent.bestChild > uint64(len(s.nodes)) {
|
|
return errInvalidBestDescendantIndex
|
|
}
|
|
bestChild := s.nodes[parent.bestChild]
|
|
// Is current parent's best child viable to be head? Based on justification and finalization rules.
|
|
bestChildLeadsToViableHead, err := s.leadsToViableHead(bestChild)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if childLeadsToViableHead && !bestChildLeadsToViableHead {
|
|
// The child leads to a viable head, but the current parent's best child doesnt.
|
|
newParentChild = changeToChild
|
|
} else if !childLeadsToViableHead && bestChildLeadsToViableHead {
|
|
// The child doesn't lead to a viable head, the current parent's best child does.
|
|
newParentChild = noChange
|
|
} else if child.weight == bestChild.weight {
|
|
// If both are viable, compare their weights.
|
|
// Tie-breaker of equal weights by root.
|
|
if bytes.Compare(child.root[:], bestChild.root[:]) > 0 {
|
|
newParentChild = changeToChild
|
|
} else {
|
|
newParentChild = noChange
|
|
}
|
|
} else {
|
|
// Choose winner by weight.
|
|
if child.weight > bestChild.weight {
|
|
newParentChild = changeToChild
|
|
} else {
|
|
newParentChild = noChange
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if childLeadsToViableHead {
|
|
// If parent doesn't have a best child and the child is viable.
|
|
newParentChild = changeToChild
|
|
} else {
|
|
// If parent doesn't have a best child and the child is not viable.
|
|
newParentChild = noChange
|
|
}
|
|
}
|
|
|
|
// Update parent with the outcome.
|
|
parent.bestChild = newParentChild[0]
|
|
parent.bestDescendant = newParentChild[1]
|
|
s.nodes[parentIndex] = parent
|
|
|
|
return nil
|
|
}
|
|
|
|
// prune prunes the store with the new finalized root. The tree is only
|
|
// pruned if the input finalized root are different than the one in stored and
|
|
// the number of the nodes in store has met prune threshold.
|
|
func (s *Store) prune(ctx context.Context, finalizedRoot [32]byte) error {
|
|
_, span := trace.StartSpan(ctx, "protoArrayForkChoice.prune")
|
|
defer span.End()
|
|
|
|
s.nodesLock.Lock()
|
|
defer s.nodesLock.Unlock()
|
|
|
|
// The node would have seen finalized root or else it'd
|
|
// be able to prune it.
|
|
finalizedIndex, ok := s.nodesIndices[finalizedRoot]
|
|
if !ok {
|
|
return errUnknownFinalizedRoot
|
|
}
|
|
|
|
// The number of the nodes has not met the prune threshold.
|
|
// Pruning at small numbers incurs more cost than benefit.
|
|
if finalizedIndex < s.pruneThreshold {
|
|
return nil
|
|
}
|
|
|
|
// Remove the key/values from indices mapping on to be pruned nodes.
|
|
// These nodes are before the finalized index.
|
|
for i := uint64(0); i < finalizedIndex; i++ {
|
|
if int(i) >= len(s.nodes) {
|
|
return errInvalidNodeIndex
|
|
}
|
|
delete(s.nodesIndices, s.nodes[i].root)
|
|
}
|
|
|
|
// Finalized index can not be greater than the length of the node.
|
|
if int(finalizedIndex) >= len(s.nodes) {
|
|
return errors.New("invalid finalized index")
|
|
}
|
|
s.nodes = s.nodes[finalizedIndex:]
|
|
|
|
// Adjust indices to node mapping.
|
|
for k, v := range s.nodesIndices {
|
|
s.nodesIndices[k] = v - finalizedIndex
|
|
}
|
|
|
|
// Iterate through existing nodes and adjust its parent/child indices with the newly pruned layout.
|
|
for i, node := range s.nodes {
|
|
if node.parent != NonExistentNode {
|
|
// If the node's parent is less than finalized index, set it to non existent.
|
|
if node.parent >= finalizedIndex {
|
|
node.parent -= finalizedIndex
|
|
} else {
|
|
node.parent = NonExistentNode
|
|
}
|
|
}
|
|
if node.bestChild != NonExistentNode {
|
|
if node.bestChild < finalizedIndex {
|
|
return errInvalidBestChildIndex
|
|
}
|
|
node.bestChild -= finalizedIndex
|
|
}
|
|
if node.bestDescendant != NonExistentNode {
|
|
if node.bestDescendant < finalizedIndex {
|
|
return errInvalidBestDescendantIndex
|
|
}
|
|
node.bestDescendant -= finalizedIndex
|
|
}
|
|
|
|
s.nodes[i] = node
|
|
}
|
|
|
|
prunedCount.Inc()
|
|
|
|
return nil
|
|
}
|
|
|
|
// leadsToViableHead returns true if the node or the best descendent of the node is viable for head.
|
|
// Any node with diff finalized or justified epoch than the ones in fork choice store
|
|
// should not be viable to head.
|
|
func (s *Store) leadsToViableHead(node *Node) (bool, error) {
|
|
var bestDescendentViable bool
|
|
bestDescendentIndex := node.bestDescendant
|
|
|
|
// If the best descendant is not part of the leaves.
|
|
if bestDescendentIndex != NonExistentNode {
|
|
// Protection against out of bound, best descendent index can not be
|
|
// exceeds length of nodes list.
|
|
if bestDescendentIndex >= uint64(len(s.nodes)) {
|
|
return false, errInvalidBestDescendantIndex
|
|
}
|
|
|
|
bestDescendentNode := s.nodes[bestDescendentIndex]
|
|
bestDescendentViable = s.viableForHead(bestDescendentNode)
|
|
}
|
|
|
|
// The node is viable as long as the best descendent is viable.
|
|
return bestDescendentViable || s.viableForHead(node), nil
|
|
}
|
|
|
|
// viableForHead returns true if the node is viable to head.
|
|
// Any node with diff finalized or justified epoch than the ones in fork choice store
|
|
// should not be viable to head.
|
|
func (s *Store) viableForHead(node *Node) bool {
|
|
// `node` is viable if its justified epoch and finalized epoch are the same as the one in `Store`.
|
|
// It's also viable if we are in genesis epoch.
|
|
justified := s.justifiedEpoch == node.justifiedEpoch || s.justifiedEpoch == 0
|
|
finalized := s.finalizedEpoch == node.finalizedEpoch || s.finalizedEpoch == 0
|
|
|
|
return justified && finalized
|
|
}
|