prysm-pulse/beacon-chain/state/stateutil/trie_helpers.go
terence tsao 9421ac13d8
State: various clean up (#8633)
Co-authored-by: Raul Jordan <raul@prysmaticlabs.com>
2021-03-19 20:03:19 +00:00

315 lines
10 KiB
Go

package stateutil
import (
"bytes"
"encoding/binary"
"github.com/pkg/errors"
"github.com/prysmaticlabs/prysm/shared/hashutil"
"github.com/prysmaticlabs/prysm/shared/htrutils"
"github.com/prysmaticlabs/prysm/shared/trieutil"
)
// ReturnTrieLayer returns the representation of a merkle trie when
// provided with the elements of a fixed sized trie and the corresponding depth of
// it.
func ReturnTrieLayer(elements [][32]byte, length uint64) [][]*[32]byte {
hasher := hashutil.CustomSHA256Hasher()
leaves := elements
if len(leaves) == 1 {
return [][]*[32]byte{{&leaves[0]}}
}
hashLayer := leaves
layers := make([][][32]byte, htrutils.Depth(length)+1)
layers[0] = hashLayer
layers, _ = merkleizeTrieLeaves(layers, hashLayer, hasher)
refLayers := make([][]*[32]byte, len(layers))
for i, val := range layers {
refLayers[i] = make([]*[32]byte, len(val))
for j, innerVal := range val {
newVal := innerVal
refLayers[i][j] = &newVal
}
}
return refLayers
}
func merkleizeTrieLeaves(layers [][][32]byte, hashLayer [][32]byte,
hasher func([]byte) [32]byte) ([][][32]byte, [][32]byte) {
// We keep track of the hash layers of a Merkle trie until we reach
// the top layer of length 1, which contains the single root element.
// [Root] -> Top layer has length 1.
// [E] [F] -> This layer has length 2.
// [A] [B] [C] [D] -> The bottom layer has length 4 (needs to be a power of two).
i := 1
chunkBuffer := bytes.NewBuffer([]byte{})
chunkBuffer.Grow(64)
for len(hashLayer) > 1 && i < len(layers) {
layer := make([][32]byte, len(hashLayer)/2)
for j := 0; j < len(hashLayer); j += 2 {
chunkBuffer.Write(hashLayer[j][:])
chunkBuffer.Write(hashLayer[j+1][:])
hashedChunk := hasher(chunkBuffer.Bytes())
layer[j/2] = hashedChunk
chunkBuffer.Reset()
}
hashLayer = layer
layers[i] = hashLayer
i++
}
return layers, hashLayer
}
// ReturnTrieLayerVariable returns the representation of a merkle trie when
// provided with the elements of a variable sized trie and the corresponding depth of
// it.
func ReturnTrieLayerVariable(elements [][32]byte, length uint64) [][]*[32]byte {
hasher := hashutil.CustomSHA256Hasher()
depth := htrutils.Depth(length)
layers := make([][]*[32]byte, depth+1)
// Return zerohash at depth
if len(elements) == 0 {
zerohash := trieutil.ZeroHashes[depth]
layers[len(layers)-1] = []*[32]byte{&zerohash}
return layers
}
transformedLeaves := make([]*[32]byte, len(elements))
for i := range elements {
arr := elements[i]
transformedLeaves[i] = &arr
}
layers[0] = transformedLeaves
buffer := bytes.NewBuffer([]byte{})
buffer.Grow(64)
for i := 0; i < int(depth); i++ {
oddNodeLength := len(layers[i])%2 == 1
if oddNodeLength {
zerohash := trieutil.ZeroHashes[i]
layers[i] = append(layers[i], &zerohash)
}
updatedValues := make([]*[32]byte, 0, len(layers[i])/2)
for j := 0; j < len(layers[i]); j += 2 {
buffer.Write(layers[i][j][:])
buffer.Write(layers[i][j+1][:])
concat := hasher(buffer.Bytes())
updatedValues = append(updatedValues, &concat)
buffer.Reset()
}
// remove zerohash node from tree
if oddNodeLength {
layers[i] = layers[i][:len(layers[i])-1]
}
layers[i+1] = updatedValues
}
return layers
}
// RecomputeFromLayer recomputes specific branches of a fixed sized trie depending on the provided changed indexes.
func RecomputeFromLayer(changedLeaves [][32]byte, changedIdx []uint64, layer [][]*[32]byte) ([32]byte, [][]*[32]byte, error) {
hasher := hashutil.CustomSHA256Hasher()
for i, idx := range changedIdx {
layer[0][idx] = &changedLeaves[i]
}
if len(changedIdx) == 0 {
return *layer[0][0], layer, nil
}
leaves := layer[0]
// We need to ensure we recompute indices of the Merkle tree which
// changed in-between calls to this function. This check adds an offset
// to the recomputed indices to ensure we do so evenly.
maxChangedIndex := changedIdx[len(changedIdx)-1]
if int(maxChangedIndex+2) == len(leaves) && maxChangedIndex%2 != 0 {
changedIdx = append(changedIdx, maxChangedIndex+1)
}
root := *layer[0][0]
var err error
for _, idx := range changedIdx {
root, layer, err = recomputeRootFromLayer(int(idx), layer, leaves, hasher)
if err != nil {
return [32]byte{}, nil, err
}
}
return root, layer, nil
}
// RecomputeFromLayerVariable recomputes specific branches of a variable sized trie depending on the provided changed indexes.
func RecomputeFromLayerVariable(changedLeaves [][32]byte, changedIdx []uint64, layer [][]*[32]byte) ([32]byte, [][]*[32]byte, error) {
hasher := hashutil.CustomSHA256Hasher()
if len(changedIdx) == 0 {
return *layer[0][0], layer, nil
}
root := *layer[len(layer)-1][0]
var err error
for i, idx := range changedIdx {
root, layer, err = recomputeRootFromLayerVariable(int(idx), changedLeaves[i], layer, hasher)
if err != nil {
return [32]byte{}, nil, err
}
}
return root, layer, nil
}
// this method assumes that the provided trie already has all its elements included
// in the base depth.
func recomputeRootFromLayer(idx int, layers [][]*[32]byte, chunks []*[32]byte,
hasher func([]byte) [32]byte) ([32]byte, [][]*[32]byte, error) {
root := *chunks[idx]
layers[0] = chunks
// The merkle tree structure looks as follows:
// [[r1, r2, r3, r4], [parent1, parent2], [root]]
// Using information about the index which changed, idx, we recompute
// only its branch up the tree.
currentIndex := idx
for i := 0; i < len(layers)-1; i++ {
isLeft := currentIndex%2 == 0
neighborIdx := currentIndex ^ 1
neighbor := [32]byte{}
if layers[i] != nil && len(layers[i]) != 0 && neighborIdx < len(layers[i]) {
neighbor = *layers[i][neighborIdx]
}
if isLeft {
parentHash := hasher(append(root[:], neighbor[:]...))
root = parentHash
} else {
parentHash := hasher(append(neighbor[:], root[:]...))
root = parentHash
}
parentIdx := currentIndex / 2
// Update the cached layers at the parent index.
rootVal := root
if len(layers[i+1]) == 0 {
layers[i+1] = append(layers[i+1], &rootVal)
} else {
layers[i+1][parentIdx] = &rootVal
}
currentIndex = parentIdx
}
// If there is only a single leaf, we return it (the identity element).
if len(layers[0]) == 1 {
return *layers[0][0], layers, nil
}
return root, layers, nil
}
// this method assumes that the base branch does not consist of all leaves of the
// trie. Instead missing leaves are assumed to be zerohashes, following the structure
// of a sparse merkle trie.
func recomputeRootFromLayerVariable(idx int, item [32]byte, layers [][]*[32]byte,
hasher func([]byte) [32]byte) ([32]byte, [][]*[32]byte, error) {
for idx >= len(layers[0]) {
zerohash := trieutil.ZeroHashes[0]
layers[0] = append(layers[0], &zerohash)
}
layers[0][idx] = &item
currentIndex := idx
root := item
for i := 0; i < len(layers)-1; i++ {
isLeft := currentIndex%2 == 0
neighborIdx := currentIndex ^ 1
neighbor := [32]byte{}
if neighborIdx >= len(layers[i]) {
neighbor = trieutil.ZeroHashes[i]
} else {
neighbor = *layers[i][neighborIdx]
}
if isLeft {
parentHash := hasher(append(root[:], neighbor[:]...))
root = parentHash
} else {
parentHash := hasher(append(neighbor[:], root[:]...))
root = parentHash
}
parentIdx := currentIndex / 2
if len(layers[i+1]) == 0 || parentIdx >= len(layers[i+1]) {
newItem := root
layers[i+1] = append(layers[i+1], &newItem)
} else {
newItem := root
layers[i+1][parentIdx] = &newItem
}
currentIndex = parentIdx
}
return root, layers, nil
}
// AddInMixin describes a method from which a lenth mixin is added to the
// provided root.
func AddInMixin(root [32]byte, length uint64) ([32]byte, error) {
rootBuf := new(bytes.Buffer)
if err := binary.Write(rootBuf, binary.LittleEndian, length); err != nil {
return [32]byte{}, errors.Wrap(err, "could not marshal eth1data votes length")
}
// We need to mix in the length of the slice.
rootBufRoot := make([]byte, 32)
copy(rootBufRoot, rootBuf.Bytes())
return htrutils.MixInLength(root, rootBufRoot), nil
}
// Merkleize 32-byte leaves into a Merkle trie for its adequate depth, returning
// the resulting layers of the trie based on the appropriate depth. This function
// pads the leaves to a length of 32.
func Merkleize(leaves [][]byte) [][][]byte {
hashFunc := hashutil.CustomSHA256Hasher()
layers := make([][][]byte, htrutils.Depth(uint64(len(leaves)))+1)
for len(leaves) != 32 {
leaves = append(leaves, make([]byte, 32))
}
currentLayer := leaves
layers[0] = currentLayer
// We keep track of the hash layers of a Merkle trie until we reach
// the top layer of length 1, which contains the single root element.
// [Root] -> Top layer has length 1.
// [E] [F] -> This layer has length 2.
// [A] [B] [C] [D] -> The bottom layer has length 4 (needs to be a power of two).
i := 1
for len(currentLayer) > 1 && i < len(layers) {
layer := make([][]byte, 0)
for i := 0; i < len(currentLayer); i += 2 {
hashedChunk := hashFunc(append(currentLayer[i], currentLayer[i+1]...))
layer = append(layer, hashedChunk[:])
}
currentLayer = layer
layers[i] = currentLayer
i++
}
return layers
}
// MerkleizeTrieLeaves merkleize the trie leaves.
func MerkleizeTrieLeaves(layers [][][32]byte, hashLayer [][32]byte,
hasher func([]byte) [32]byte) ([][][32]byte, [][32]byte) {
// We keep track of the hash layers of a Merkle trie until we reach
// the top layer of length 1, which contains the single root element.
// [Root] -> Top layer has length 1.
// [E] [F] -> This layer has length 2.
// [A] [B] [C] [D] -> The bottom layer has length 4 (needs to be a power of two).
i := 1
chunkBuffer := bytes.NewBuffer([]byte{})
chunkBuffer.Grow(64)
for len(hashLayer) > 1 && i < len(layers) {
layer := make([][32]byte, len(hashLayer)/2)
for j := 0; j < len(hashLayer); j += 2 {
chunkBuffer.Write(hashLayer[j][:])
chunkBuffer.Write(hashLayer[j+1][:])
hashedChunk := hasher(chunkBuffer.Bytes())
layer[j/2] = hashedChunk
chunkBuffer.Reset()
}
hashLayer = layer
layers[i] = hashLayer
i++
}
return layers, hashLayer
}