prysm-pulse/sharding/collation.go
Preston Van Loon 68eba02cc2 Remove most of the remaining geth code and set up bazel (#235)
* Remove most of the remaining geth code and set up bazel for this

* chmod +x

* Add flake check

* better flake detection


Former-commit-id: 5c332ecbf2923943f646f1fe40befa95be883329 [formerly 99590fc354514584700e5ce8d7d30a8a7d541f29]
Former-commit-id: e5f919b553fe698e98090965d34eb721990b5693
2018-07-07 13:23:19 -04:00

220 lines
7.4 KiB
Go

package sharding
import (
"fmt"
"math"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/rlp"
"github.com/prysmaticlabs/geth-sharding/sharding/utils"
)
// Collation defines a base struct that serves as a primitive equivalent of a "block"
// in a sharded Ethereum blockchain.
type Collation struct {
header *CollationHeader
// body represents the serialized blob of a collation's transactions.
// this is a read-only property.
body []byte
// transactions serves as a useful slice to store deserialized chunks from the
// collation's body. Every time this transactions slice is updated, the serialized
// body would need to be recalculated. This will be a useful property for proposers
// in our system.
transactions []*types.Transaction
}
// CollationHeader base struct.
type CollationHeader struct {
// RLP decoding only works on exported properties of structs. In this case, we want
// to keep collation properties as read-only and only accessible through getters.
// We can accomplish this through this nested data property.
data collationHeaderData
}
type collationHeaderData struct {
ShardID *big.Int // the shard ID of the shard.
ChunkRoot *common.Hash // the root of the chunk tree which identifies collation body.
Period *big.Int // the period number in which collation to be included.
ProposerAddress *common.Address // address of the collation proposer.
ProposerSignature [32]byte // the proposer's signature for calculating collation hash.
}
var collationSizelimit = int64(math.Pow(float64(2), float64(20)))
// NewCollation initializes a collation and leaves it up to clients to serialize, deserialize
// and provide the body and transactions upon creation.
func NewCollation(header *CollationHeader, body []byte, transactions []*types.Transaction) *Collation {
return &Collation{header, body, transactions}
}
// NewCollationHeader initializes a collation header struct.
func NewCollationHeader(shardID *big.Int, chunkRoot *common.Hash, period *big.Int, proposerAddress *common.Address, proposerSignature [32]byte) *CollationHeader {
data := collationHeaderData{
ShardID: shardID,
ChunkRoot: chunkRoot,
Period: period,
ProposerAddress: proposerAddress,
ProposerSignature: proposerSignature,
}
return &CollationHeader{data}
}
// Hash takes the keccak256 of the collation header's data contents.
func (h *CollationHeader) Hash() (hash common.Hash) {
hw := sha3.NewKeccak256()
rlp.Encode(hw, h.data)
hw.Sum(hash[:0])
return hash
}
// AddSig adds the signature of proposer after collationHeader gets signed.
func (h *CollationHeader) AddSig(sig [32]byte) {
h.data.ProposerSignature = sig
}
// Sig is the signature the collation corresponds to.
func (h *CollationHeader) Sig() [32]byte { return h.data.ProposerSignature }
// ShardID the collation corresponds to.
func (h *CollationHeader) ShardID() *big.Int { return h.data.ShardID }
// Period the collation corresponds to.
func (h *CollationHeader) Period() *big.Int { return h.data.Period }
// ChunkRoot of the serialized collation body.
func (h *CollationHeader) ChunkRoot() *common.Hash { return h.data.ChunkRoot }
// EncodeRLP gives an encoded representation of the collation header.
func (h *CollationHeader) EncodeRLP() ([]byte, error) {
return rlp.EncodeToBytes(&h.data)
}
// DecodeRLP uses an RLP Stream to populate the data field of a collation header.
func (h *CollationHeader) DecodeRLP(s *rlp.Stream) error {
return s.Decode(&h.data)
}
// Header returns the collation's header.
func (c *Collation) Header() *CollationHeader { return c.header }
// Body returns the collation's byte body.
func (c *Collation) Body() []byte { return c.body }
// Transactions returns an array of tx's in the collation.
func (c *Collation) Transactions() []*types.Transaction { return c.transactions }
// ProposerAddress is the coinbase addr of the creator for the collation.
func (c *Collation) ProposerAddress() *common.Address {
return c.header.data.ProposerAddress
}
// CalculateChunkRoot updates the collation header's chunk root based on the body.
func (c *Collation) CalculateChunkRoot() {
chunks := BytesToChunks(c.body) // wrapper allowing us to merklizing the chunks.
chunkRoot := types.DeriveSha(chunks) // merklize the serialized blobs.
c.header.data.ChunkRoot = &chunkRoot
}
// CalculatePOC calculates the Proof of Custody given the collation body and
// some salt, which is appended to each chunk in the collation body before it
// is hashed.
func (c *Collation) CalculatePOC(salt []byte) common.Hash {
body := make([]byte, 0, len(c.body)*(1+len(salt)))
// TODO: Use 32 byte chunks instead of a single byte
for _, chunk := range c.body {
body = append(append(body, salt...), chunk)
}
if len(c.body) == 0 {
body = salt
}
chunks := BytesToChunks(body) // wrapper allowing us to merklizing the chunks.
return types.DeriveSha(chunks) // merklize the serialized blobs.
}
// BytesToChunks takes the collation body bytes and wraps it into type Chunks,
// which can be merklized.
func BytesToChunks(body []byte) Chunks {
return Chunks(body)
}
// convertTxToRawBlob transactions into RawBlobs. This step encodes transactions uses RLP encoding
func convertTxToRawBlob(txs []*types.Transaction) ([]*utils.RawBlob, error) {
blobs := make([]*utils.RawBlob, len(txs))
for i := 0; i < len(txs); i++ {
err := error(nil)
blobs[i], err = utils.NewRawBlob(txs[i], false)
if err != nil {
return nil, err
}
}
return blobs, nil
}
// SerializeTxToBlob converts transactions using two steps. First performs RLP encoding, and then blob encoding.
func SerializeTxToBlob(txs []*types.Transaction) ([]byte, error) {
blobs, err := convertTxToRawBlob(txs)
if err != nil {
return nil, err
}
serializedTx, err := utils.Serialize(blobs)
if err != nil {
return nil, err
}
if int64(len(serializedTx)) > collationSizelimit {
return nil, fmt.Errorf("the serialized body size %d exceeded the collation size limit %d", len(serializedTx), collationSizelimit)
}
return serializedTx, nil
}
// convertRawBlobToTx converts raw blobs back to their original transactions.
func convertRawBlobToTx(rawBlobs []utils.RawBlob) ([]*types.Transaction, error) {
blobs := make([]*types.Transaction, len(rawBlobs))
for i := 0; i < len(rawBlobs); i++ {
blobs[i] = types.NewTransaction(0, common.HexToAddress("0x"), nil, 0, nil, nil)
err := utils.ConvertFromRawBlob(&rawBlobs[i], blobs[i])
if err != nil {
return nil, fmt.Errorf("creation of transactions from raw blobs failed: %v", err)
}
}
return blobs, nil
}
// DeserializeBlobToTx takes byte array blob and converts it back
// to original txs and returns the txs in tx array.
func DeserializeBlobToTx(serialisedBlob []byte) (*[]*types.Transaction, error) {
deserializedBlobs, err := utils.Deserialize(serialisedBlob)
if err != nil {
return nil, err
}
txs, err := convertRawBlobToTx(deserializedBlobs)
if err != nil {
return nil, err
}
return &txs, nil
}
// Chunks is a wrapper around a chunk array to implement DerivableList,
// which allows us to Merklize the chunks into the chunkRoot.
type Chunks []byte
// Len returns the number of chunks in this list.
func (ch Chunks) Len() int { return len(ch) }
// GetRlp returns the RLP encoding of one chunk from the list.
func (ch Chunks) GetRlp(i int) []byte {
bytes, _ := rlp.EncodeToBytes(ch[i])
return bytes
}