prysm-pulse/shared/trieutil/sparse_merkle.go
Raul Jordan c1a9937760
Post ChainStart Validator Activation (#1934)
* implemented all the merkle func signatures

* branch indices complete

* check for index out of range in generating merkle proof

* completed full tests for sparse merkle trie impl

* lint

* formatting

* gazelle

* commentary

* ivan comments

* fmt

* get rid of the deposit trie

* recalculate trie when eth1 data changes

* default data response recalculates tree

* update merkle trie to use raw bytes

* use the new verify merkle root func

* builds

* if default data response historical deposits are empty, return the deposit root at the contract at the time

* work on trie

* trying again with more logging

* keep track of merkle trie indices, use correct big int ops

* use uint for merkle idx

* add todo

* update ticker correctly

* fix config and remove unnecessary logs

* readd plus one fix

* clarify some details

* weird imports spacing

* gazelle, lint

* fix tests using the new deposit trie

* builds but tests still fail

* rpc tests

* lint

* tests pass

* bazel lint

* rem commented block

* revert att slot fix

* preston comments

* comments

* fix build

* address last comment

* use counter

* imports
2019-03-12 00:05:55 -04:00

149 lines
4.9 KiB
Go

package trieutil
import (
"bytes"
"errors"
"github.com/prysmaticlabs/prysm/shared/bytesutil"
"github.com/prysmaticlabs/prysm/shared/hashutil"
)
// MerkleTrie implements a sparse, general purpose Merkle trie to be used
// across ETH2.0 Phase 0 functionality.
type MerkleTrie struct {
branches [][][]byte
originalItems [][]byte // list of provided items before hashing them into leaves.
}
// GenerateTrieFromItems constructs a Merkle trie from a sequence of byte slices.
func GenerateTrieFromItems(items [][]byte, depth int) (*MerkleTrie, error) {
if len(items) == 0 {
return nil, errors.New("no items provided to generate Merkle trie")
}
leaves := make([][]byte, len(items))
emptyNodes := generateEmptyNodes(depth)
// We then construct the leaves of the trie by hashing every
// value in the items slice.
for i, val := range items {
h := hashutil.Hash(val)
leaves[i] = h[:]
}
// Append the leaves to the branches.
branches := [][][]byte{leaves}
for i := 0; i < depth-1; i++ {
if len(branches[i])%2 == 1 {
branches[i] = append(branches[i], emptyNodes[i])
}
// We append the layer that results from hashing the trie's current layer.
branches = append(branches, hashLayer(branches[i]))
}
// Reverse the branches so as to have the root in the 0th layer.
for i, j := 0, len(branches)-1; i < j; i, j = i+1, j-1 {
branches[i], branches[j] = branches[j], branches[i]
}
return &MerkleTrie{branches: branches, originalItems: items}, nil
}
// VerifyMerkleProof verifies a Merkle branch against a root of a trie.
func VerifyMerkleProof(root []byte, item []byte, merkleIndex int, proof [][]byte) bool {
leaf := hashutil.Hash(item)
node := leaf[:]
branchIndices := BranchIndices(merkleIndex, len(proof))
for i := 0; i < len(proof); i++ {
if branchIndices[i]%2 == 0 {
node = parentHash(node[:], proof[i])
} else {
node = parentHash(proof[i], node[:])
}
}
return bytes.Equal(root, node)
}
// BranchIndices returns the indices of all ancestors for a node with up to the root
// given the node's index by utilizing the depth of the trie.
func BranchIndices(merkleIndex int, depth int) []int {
indices := make([]int, depth)
idx := merkleIndex
indices[0] = idx
for i := 1; i < depth; i++ {
idx /= 2
indices[i] = idx
}
return indices
}
// Root of the Merkle trie.
func (m *MerkleTrie) Root() [32]byte {
return bytesutil.ToBytes32(m.branches[0][0])
}
// Items returns the original items passed in when creating the Merkle trie.
func (m *MerkleTrie) Items() [][]byte {
return m.originalItems
}
// MerkleProof obtains a Merkle proof for an item at a given
// index in the Merkle trie up to the root of the trie.
func (m *MerkleTrie) MerkleProof(merkleIndex int) ([][]byte, error) {
lastLevel := m.branches[len(m.branches)-1]
if merkleIndex < 0 || merkleIndex >= len(lastLevel) || bytes.Equal(lastLevel[merkleIndex], []byte{}) {
return nil, errors.New("merkle index out of range in trie")
}
branchIndices := BranchIndices(merkleIndex, len(m.branches))
// We create a list of proof indices, which do not include the root so the length
// of our proof will be the length of the branch indices - 1.
proofIndices := make([]int, len(branchIndices)-1)
for i := 0; i < len(proofIndices); i++ {
// We fetch the sibling by flipping the rightmost bit.
proofIndices[i] = branchIndices[i] ^ 1
}
proof := make([][]byte, len(proofIndices))
for j := 0; j < len(proofIndices); j++ {
// We fetch the layer that corresponds to the proof element index
// in our Merkle trie's branches. Since the length of proof indices
// is the len(tree)-1, this will ignore the root.
layer := m.branches[len(m.branches)-1-j]
proof[j] = layer[proofIndices[j]]
}
return proof, nil
}
// parentHash takes a left and right node and hashes their concatenation.
func parentHash(left []byte, right []byte) []byte {
res := hashutil.Hash(append(left, right...))
return res[:]
}
// hashLayer computes the layer on top of another one by hashing left and right
// nodes to compute the nodes in the trie above.
func hashLayer(layer [][]byte) [][]byte {
chunks := partition(layer)
topLayer := [][]byte{}
for i := 0; i < len(chunks); i++ {
topLayer = append(topLayer, parentHash(chunks[i][0], chunks[i][1]))
}
return topLayer
}
// generateEmptyNodes creates a trie of empty nodes up a path given a trie depth.
// This is necessary given the Merkle trie is a balanced trie and empty nodes serve
// as padding along the way if an odd number of leaves are originally provided.
func generateEmptyNodes(depth int) [][]byte {
nodes := make([][]byte, depth)
for i := 0; i < depth; i++ {
nodes[i] = parentHash([]byte{}, []byte{})
}
return nodes
}
// partition a slice into chunks of a certain size.
// Example: [1, 2, 3, 4] -> [[1, 2], [3, 4]]
func partition(layer [][]byte) [][][]byte {
chunks := [][][]byte{}
size := 2
for i := 0; i < len(layer); i += size {
chunks = append(chunks, layer[i:i+size])
}
return chunks
}