mirror of
https://gitlab.com/pulsechaincom/prysm-pulse.git
synced 2024-12-22 03:30:35 +00:00
9a7393a2e3
Co-authored-by: Radosław Kapka <rkapka@wp.pl>
238 lines
6.1 KiB
Go
238 lines
6.1 KiB
Go
// Package math includes important helpers for Ethereum such as fast integer square roots.
|
|
package math
|
|
|
|
import (
|
|
"errors"
|
|
stdmath "math"
|
|
"math/big"
|
|
"math/bits"
|
|
"sync"
|
|
|
|
"github.com/thomaso-mirodin/intmath/u64"
|
|
)
|
|
|
|
func init() {
|
|
// The Int function assumes that the operating system is 64 bit. In any case, Ethereum
|
|
// consensus layer uses 64 bit values almost exclusively so 64 bit OS requirement should
|
|
// already be established. This panic is a strict fail fast feedback to alert 32 bit users
|
|
// that they are not supported.
|
|
if stdmath.MaxUint < stdmath.MaxUint64 {
|
|
panic("Prysm is only supported on 64 bit OS")
|
|
}
|
|
}
|
|
|
|
// ErrOverflow occurs when an operation exceeds max or minimum values.
|
|
var (
|
|
ErrOverflow = errors.New("integer overflow")
|
|
ErrDivByZero = errors.New("integer divide by zero")
|
|
ErrMulOverflow = errors.New("multiplication overflows")
|
|
ErrAddOverflow = errors.New("addition overflows")
|
|
ErrSubUnderflow = errors.New("subtraction underflow")
|
|
|
|
// Sensible guess for 500 000 validators
|
|
cachedSquareRoot = struct {
|
|
sync.Mutex
|
|
squareRoot, balance uint64
|
|
}{squareRoot: 126491106, balance: 15999999897103236}
|
|
)
|
|
|
|
// Common square root values.
|
|
var squareRootTable = map[uint64]uint64{
|
|
4: 2,
|
|
16: 4,
|
|
64: 8,
|
|
256: 16,
|
|
1024: 32,
|
|
4096: 64,
|
|
16384: 128,
|
|
65536: 256,
|
|
262144: 512,
|
|
1048576: 1024,
|
|
4194304: 2048,
|
|
}
|
|
|
|
// CachedSquareRoot implements Newton's algorithm to compute the square root of
|
|
// the given uint64 starting from the last cached value
|
|
func CachedSquareRoot(balance uint64) uint64 {
|
|
if balance == 0 {
|
|
return 0
|
|
}
|
|
cachedSquareRoot.Lock()
|
|
defer cachedSquareRoot.Unlock()
|
|
if balance == cachedSquareRoot.balance {
|
|
return cachedSquareRoot.squareRoot
|
|
}
|
|
cachedSquareRoot.balance = balance
|
|
val := balance / cachedSquareRoot.squareRoot
|
|
for {
|
|
cachedSquareRoot.squareRoot = (cachedSquareRoot.squareRoot + val) / 2
|
|
val = balance / cachedSquareRoot.squareRoot
|
|
if cachedSquareRoot.squareRoot <= val {
|
|
return cachedSquareRoot.squareRoot
|
|
}
|
|
}
|
|
}
|
|
|
|
// IntegerSquareRoot defines a function that returns the
|
|
// largest possible integer root of a number using go's standard library.
|
|
func IntegerSquareRoot(n uint64) uint64 {
|
|
if v, ok := squareRootTable[n]; ok {
|
|
return v
|
|
}
|
|
|
|
// Golang floating point precision may be lost above 52 bits, so we use a
|
|
// non floating point method. u64.Sqrt is about x2.5 slower than math.Sqrt.
|
|
if n >= 1<<52 {
|
|
return u64.Sqrt(n)
|
|
}
|
|
|
|
return uint64(stdmath.Sqrt(float64(n)))
|
|
}
|
|
|
|
// CeilDiv8 divides the input number by 8
|
|
// and takes the ceiling of that number.
|
|
func CeilDiv8(n int) int {
|
|
ret := n / 8
|
|
if n%8 > 0 {
|
|
ret++
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// IsPowerOf2 returns true if n is an
|
|
// exact power of two. False otherwise.
|
|
func IsPowerOf2(n uint64) bool {
|
|
return n != 0 && (n&(n-1)) == 0
|
|
}
|
|
|
|
// PowerOf2 returns an integer that is the provided
|
|
// exponent of 2. Can only return powers of 2 till 63,
|
|
// after that it overflows
|
|
func PowerOf2(n uint64) uint64 {
|
|
if n >= 64 {
|
|
panic("integer overflow")
|
|
}
|
|
return 1 << n
|
|
}
|
|
|
|
// Max returns the larger integer of the two
|
|
// given ones.This is used over the Max function
|
|
// in the standard math library because that max function
|
|
// has to check for some special floating point cases
|
|
// making it slower by a magnitude of 10.
|
|
func Max(a, b uint64) uint64 {
|
|
if a > b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Min returns the smaller integer of the two
|
|
// given ones. This is used over the Min function
|
|
// in the standard math library because that min function
|
|
// has to check for some special floating point cases
|
|
// making it slower by a magnitude of 10.
|
|
func Min(a, b uint64) uint64 {
|
|
if a < b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Mul64 multiples 2 64-bit unsigned integers and checks if they
|
|
// lead to an overflow. If they do not, it returns the result
|
|
// without an error.
|
|
func Mul64(a, b uint64) (uint64, error) {
|
|
overflows, val := bits.Mul64(a, b)
|
|
if overflows > 0 {
|
|
return 0, errors.New("multiplication overflows")
|
|
}
|
|
return val, nil
|
|
}
|
|
|
|
// Div64 divides two 64-bit unsigned integers and checks for errors.
|
|
func Div64(a, b uint64) (uint64, error) {
|
|
if b == 0 {
|
|
return 0, ErrDivByZero
|
|
}
|
|
val, _ := bits.Div64(0, a, b)
|
|
return val, nil
|
|
}
|
|
|
|
// Add64 adds 2 64-bit unsigned integers and checks if they
|
|
// lead to an overflow. If they do not, it returns the result
|
|
// without an error.
|
|
func Add64(a, b uint64) (uint64, error) {
|
|
res, carry := bits.Add64(a, b, 0 /* carry */)
|
|
if carry > 0 {
|
|
return 0, errors.New("addition overflows")
|
|
}
|
|
return res, nil
|
|
}
|
|
|
|
// Sub64 subtracts two 64-bit unsigned integers and checks for errors.
|
|
func Sub64(a, b uint64) (uint64, error) {
|
|
res, borrow := bits.Sub64(a, b, 0 /* borrow */)
|
|
if borrow > 0 {
|
|
return 0, errors.New("subtraction underflow")
|
|
}
|
|
return res, nil
|
|
}
|
|
|
|
// Mod64 finds remainder of division of two 64-bit unsigned integers and checks for errors.
|
|
func Mod64(a, b uint64) (uint64, error) {
|
|
if b == 0 {
|
|
return 0, ErrDivByZero
|
|
}
|
|
_, val := bits.Div64(0, a, b)
|
|
return val, nil
|
|
}
|
|
|
|
// Int returns the integer value of the uint64 argument. If there is an overflow, then an error is
|
|
// returned.
|
|
func Int(u uint64) (int, error) {
|
|
if u > stdmath.MaxInt {
|
|
return 0, ErrOverflow
|
|
}
|
|
return int(u), nil // lint:ignore uintcast -- This is the preferred method of casting uint64 to int.
|
|
}
|
|
|
|
// AddInt adds two or more integers and checks for integer overflows.
|
|
func AddInt(i ...int) (int, error) {
|
|
var sum int
|
|
for _, ii := range i {
|
|
if ii > 0 && sum > stdmath.MaxInt-ii {
|
|
return 0, ErrOverflow
|
|
} else if ii < 0 && sum < stdmath.MinInt-ii {
|
|
return 0, ErrOverflow
|
|
}
|
|
|
|
sum += ii
|
|
}
|
|
return sum, nil
|
|
}
|
|
|
|
// Wei is the smallest unit of Ether, represented as a pointer to a bigInt.
|
|
type Wei *big.Int
|
|
|
|
// Gwei is a denomination of 1e9 Wei represented as an uint64.
|
|
type Gwei uint64
|
|
|
|
// WeiToGwei converts big int wei to uint64 gwei.
|
|
// The input `v` is copied before being modified.
|
|
func WeiToGwei(v Wei) Gwei {
|
|
if v == nil {
|
|
return 0
|
|
}
|
|
gweiPerEth := big.NewInt(1e9)
|
|
copied := big.NewInt(0).Set(v)
|
|
copied.Div(copied, gweiPerEth)
|
|
return Gwei(copied.Uint64())
|
|
}
|
|
|
|
// IsValidUint256 given a bigint checks if the value is a valid Uint256
|
|
func IsValidUint256(bi *big.Int) bool {
|
|
return bi.Cmp(big.NewInt(0)) >= 0 && bi.BitLen() <= 256
|
|
}
|