prysm-pulse/client/node/node.go
2018-07-30 23:41:27 -05:00

268 lines
7.9 KiB
Go

// Package node defines a backend for a sharding-enabled, Ethereum blockchain.
// It defines a struct which handles the lifecycle of services in the
// sharding system, providing a bridge to the main Ethereum blockchain,
// as well as instantiating peer-to-peer networking for shards.
package node
import (
"fmt"
"os"
"os/signal"
"sync"
"syscall"
"time"
"github.com/ethereum/go-ethereum/node"
"github.com/prysmaticlabs/prysm/client/attester"
"github.com/prysmaticlabs/prysm/client/mainchain"
"github.com/prysmaticlabs/prysm/client/observer"
"github.com/prysmaticlabs/prysm/client/params"
"github.com/prysmaticlabs/prysm/client/proposer"
"github.com/prysmaticlabs/prysm/client/simulator"
"github.com/prysmaticlabs/prysm/client/syncer"
"github.com/prysmaticlabs/prysm/client/txpool"
"github.com/prysmaticlabs/prysm/client/utils"
"github.com/prysmaticlabs/prysm/shared"
"github.com/prysmaticlabs/prysm/shared/cmd"
"github.com/prysmaticlabs/prysm/shared/database"
"github.com/prysmaticlabs/prysm/shared/debug"
"github.com/prysmaticlabs/prysm/shared/p2p"
"github.com/sirupsen/logrus"
"github.com/urfave/cli"
)
var log = logrus.WithField("prefix", "node")
const shardChainDBName = "shardchaindata"
// ShardEthereum is a service that is registered and started when geth is launched.
// it contains APIs and fields that handle the different components of the sharded
// Ethereum network.
type ShardEthereum struct {
shardConfig *params.Config // Holds necessary information to configure shards.
// Lifecycle and service stores.
services *shared.ServiceRegistry
lock sync.RWMutex
stop chan struct{} // Channel to wait for termination notifications.
db *database.DB
}
// New creates a new sharding-enabled Ethereum instance. This is called in the main
// geth sharding entrypoint.
func New(ctx *cli.Context) (*ShardEthereum, error) {
registry := shared.NewServiceRegistry()
shardEthereum := &ShardEthereum{
services: registry,
stop: make(chan struct{}),
}
// Configure shardConfig by loading the default.
shardEthereum.shardConfig = params.DefaultConfig()
if err := shardEthereum.startDB(ctx); err != nil {
return nil, err
}
if err := shardEthereum.registerP2P(); err != nil {
return nil, err
}
if err := shardEthereum.registerMainchainClient(ctx); err != nil {
return nil, err
}
actorFlag := ctx.GlobalString(utils.ActorFlag.Name)
if err := shardEthereum.registerTXPool(actorFlag); err != nil {
return nil, err
}
shardIDFlag := ctx.GlobalInt(utils.ShardIDFlag.Name)
if err := shardEthereum.registerSyncerService(shardEthereum.shardConfig, shardIDFlag); err != nil {
return nil, err
}
if err := shardEthereum.registerActorService(shardEthereum.shardConfig, actorFlag, shardIDFlag); err != nil {
return nil, err
}
return shardEthereum, nil
}
// Start the ShardEthereum service and kicks off the p2p and actor's main loop.
func (s *ShardEthereum) Start() {
s.lock.Lock()
log.Info("Starting sharding node")
s.services.StartAll()
stop := s.stop
s.lock.Unlock()
go func() {
sigc := make(chan os.Signal, 1)
signal.Notify(sigc, syscall.SIGINT, syscall.SIGTERM)
defer signal.Stop(sigc)
<-sigc
log.Info("Got interrupt, shutting down...")
go s.Close()
for i := 10; i > 0; i-- {
<-sigc
if i > 1 {
log.Info("Already shutting down, interrupt more to panic.", "times", i-1)
}
}
debug.Exit() // Ensure trace and CPU profile data are flushed.
panic("Panic closing the sharding node")
}()
// Wait for stop channel to be closed.
<-stop
}
// Close handles graceful shutdown of the system.
func (s *ShardEthereum) Close() {
s.lock.Lock()
defer s.lock.Unlock()
s.db.Close()
s.services.StopAll()
log.Info("Stopping sharding node")
close(s.stop)
}
// startDB attaches a LevelDB wrapped object to the shardEthereum instance.
func (s *ShardEthereum) startDB(ctx *cli.Context) error {
path := ctx.GlobalString(cmd.DataDirFlag.Name)
config := &database.DBConfig{DataDir: path, Name: shardChainDBName, InMemory: false}
db, err := database.NewDB(config)
if err != nil {
return err
}
s.db = db
return nil
}
// registerP2P attaches a p2p server to the ShardEthereum instance.
func (s *ShardEthereum) registerP2P() error {
shardp2p, err := p2p.NewServer()
if err != nil {
return fmt.Errorf("could not register shardp2p service: %v", err)
}
return s.services.RegisterService(shardp2p)
}
func (s *ShardEthereum) registerMainchainClient(ctx *cli.Context) error {
path := node.DefaultDataDir()
if ctx.GlobalIsSet(cmd.DataDirFlag.Name) {
path = ctx.GlobalString(cmd.DataDirFlag.Name)
}
endpoint := ctx.Args().First()
if endpoint == "" {
endpoint = fmt.Sprintf("%s/%s.ipc", path, mainchain.ClientIdentifier)
}
if ctx.GlobalIsSet(cmd.RPCProviderFlag.Name) {
endpoint = ctx.GlobalString(cmd.RPCProviderFlag.Name)
} else if ctx.GlobalIsSet(cmd.IPCPathFlag.Name) {
endpoint = ctx.GlobalString(cmd.IPCPathFlag.Name)
}
passwordFile := ctx.GlobalString(cmd.PasswordFileFlag.Name)
depositFlag := ctx.GlobalBool(utils.DepositFlag.Name)
client, err := mainchain.NewSMCClient(endpoint, path, depositFlag, passwordFile)
if err != nil {
return fmt.Errorf("could not register smc client service: %v", err)
}
return s.services.RegisterService(client)
}
// registerTXPool is only relevant to proposers in the sharded system. It will
// spin up a transaction pool that will relay incoming transactions via an
// event feed. For our first releases, this can just relay test/fake transaction data
// the proposer can serialize into collation blobs.
// TODO: design this txpool system for our first release.
func (s *ShardEthereum) registerTXPool(actor string) error {
if actor != "proposer" {
return nil
}
var shardp2p *p2p.Server
if err := s.services.FetchService(&shardp2p); err != nil {
return err
}
pool, err := txpool.NewTXPool(shardp2p)
if err != nil {
return fmt.Errorf("could not register shard txpool service: %v", err)
}
return s.services.RegisterService(pool)
}
// Registers the actor according to CLI flags. Either attester/proposer/observer.
func (s *ShardEthereum) registerActorService(config *params.Config, actor string, shardID int) error {
var shardp2p *p2p.Server
if err := s.services.FetchService(&shardp2p); err != nil {
return err
}
var client *mainchain.SMCClient
if err := s.services.FetchService(&client); err != nil {
return err
}
var sync *syncer.Syncer
if err := s.services.FetchService(&sync); err != nil {
return err
}
switch actor {
case "attester":
not, err := attester.NewAttester(config, client, shardp2p, s.db)
if err != nil {
return fmt.Errorf("could not register attester service: %v", err)
}
return s.services.RegisterService(not)
case "simulator":
sim, err := simulator.NewSimulator(config, client, shardp2p, shardID, 15*time.Second)
if err != nil {
return fmt.Errorf("could not register simulator service: %v", err)
}
return s.services.RegisterService(sim)
case "proposer":
var pool *txpool.TXPool
if err := s.services.FetchService(&pool); err != nil {
return err
}
prop, err := proposer.NewProposer(config, client, shardp2p, pool, s.db, shardID, sync)
if err != nil {
return fmt.Errorf("could not register proposer service: %v", err)
}
return s.services.RegisterService(prop)
default:
obs, err := observer.NewObserver(shardp2p, s.db, shardID, sync, client)
if err != nil {
return fmt.Errorf("could not register observer service: %v", err)
}
return s.services.RegisterService(obs)
}
}
func (s *ShardEthereum) registerSyncerService(config *params.Config, shardID int) error {
var shardp2p *p2p.Server
if err := s.services.FetchService(&shardp2p); err != nil {
return err
}
var client *mainchain.SMCClient
if err := s.services.FetchService(&client); err != nil {
return err
}
sync, err := syncer.NewSyncer(config, client, shardp2p, s.db, shardID)
if err != nil {
return fmt.Errorf("could not register syncer service: %v", err)
}
return s.services.RegisterService(sync)
}