prysm-pulse/shared/bls/herumi/signature.go
Nishant Das 353229d50a
Add New Secure Batch Signature Verification Method (#6479)
* add more tests
* gaz
* Merge refs/heads/master into addBLSMethods
* Merge refs/heads/master into addBLSMethods
* Merge refs/heads/master into addBLSMethods
* Merge refs/heads/master into addBLSMethods
2020-07-03 07:38:13 +00:00

212 lines
7.3 KiB
Go

package herumi
import (
"fmt"
bls12 "github.com/herumi/bls-eth-go-binary/bls"
"github.com/pkg/errors"
"github.com/prysmaticlabs/prysm/shared/bls/iface"
"github.com/prysmaticlabs/prysm/shared/bytesutil"
"github.com/prysmaticlabs/prysm/shared/featureconfig"
"github.com/prysmaticlabs/prysm/shared/params"
"github.com/prysmaticlabs/prysm/shared/rand"
)
// Signature used in the BLS signature scheme.
type Signature struct {
s *bls12.Sign
}
// SignatureFromBytes creates a BLS signature from a LittleEndian byte slice.
func SignatureFromBytes(sig []byte) (iface.Signature, error) {
if featureconfig.Get().SkipBLSVerify {
return &Signature{}, nil
}
if len(sig) != params.BeaconConfig().BLSSignatureLength {
return nil, fmt.Errorf("signature must be %d bytes", params.BeaconConfig().BLSSignatureLength)
}
signature := &bls12.Sign{}
err := signature.Deserialize(sig)
if err != nil {
return nil, errors.Wrap(err, "could not unmarshal bytes into signature")
}
return &Signature{s: signature}, nil
}
// Verify a bls signature given a public key, a message.
//
// In IETF draft BLS specification:
// Verify(PK, message, signature) -> VALID or INVALID: a verification
// algorithm that outputs VALID if signature is a valid signature of
// message under public key PK, and INVALID otherwise.
//
// In ETH2.0 specification:
// def Verify(PK: BLSPubkey, message: Bytes, signature: BLSSignature) -> bool
func (s *Signature) Verify(pubKey iface.PublicKey, msg []byte) bool {
if featureconfig.Get().SkipBLSVerify {
return true
}
return s.s.VerifyByte(pubKey.(*PublicKey).p, msg)
}
// AggregateVerify verifies each public key against its respective message.
// This is vulnerable to rogue public-key attack. Each user must
// provide a proof-of-knowledge of the public key.
//
// In IETF draft BLS specification:
// AggregateVerify((PK_1, message_1), ..., (PK_n, message_n),
// signature) -> VALID or INVALID: an aggregate verification
// algorithm that outputs VALID if signature is a valid aggregated
// signature for a collection of public keys and messages, and
// outputs INVALID otherwise.
//
// In ETH2.0 specification:
// def AggregateVerify(pairs: Sequence[PK: BLSPubkey, message: Bytes], signature: BLSSignature) -> boo
func (s *Signature) AggregateVerify(pubKeys []iface.PublicKey, msgs [][32]byte) bool {
if featureconfig.Get().SkipBLSVerify {
return true
}
size := len(pubKeys)
if size == 0 {
return false
}
if size != len(msgs) {
return false
}
msgSlices := make([]byte, 0, 32*len(msgs))
rawKeys := make([]bls12.PublicKey, 0, len(pubKeys))
for i := 0; i < size; i++ {
msgSlices = append(msgSlices, msgs[i][:]...)
rawKeys = append(rawKeys, *(pubKeys[i].(*PublicKey).p))
}
// Use "NoCheck" because we do not care if the messages are unique or not.
return s.s.AggregateVerifyNoCheck(rawKeys, msgSlices)
}
// FastAggregateVerify verifies all the provided public keys with their aggregated signature.
//
// In IETF draft BLS specification:
// FastAggregateVerify(PK_1, ..., PK_n, message, signature) -> VALID
// or INVALID: a verification algorithm for the aggregate of multiple
// signatures on the same message. This function is faster than
// AggregateVerify.
//
// In ETH2.0 specification:
// def FastAggregateVerify(PKs: Sequence[BLSPubkey], message: Bytes, signature: BLSSignature) -> bool
func (s *Signature) FastAggregateVerify(pubKeys []iface.PublicKey, msg [32]byte) bool {
if featureconfig.Get().SkipBLSVerify {
return true
}
if len(pubKeys) == 0 {
return false
}
rawKeys := make([]bls12.PublicKey, len(pubKeys))
for i := 0; i < len(pubKeys); i++ {
rawKeys[i] = *(pubKeys[i].(*PublicKey).p)
}
return s.s.FastAggregateVerify(rawKeys, msg[:])
}
// NewAggregateSignature creates a blank aggregate signature.
func NewAggregateSignature() iface.Signature {
return &Signature{s: bls12.HashAndMapToSignature([]byte{'m', 'o', 'c', 'k'})}
}
// AggregateSignatures converts a list of signatures into a single, aggregated sig.
func AggregateSignatures(sigs []iface.Signature) iface.Signature {
if len(sigs) == 0 {
return nil
}
if featureconfig.Get().SkipBLSVerify {
return sigs[0]
}
signature := *sigs[0].Copy().(*Signature).s
for i := 1; i < len(sigs); i++ {
signature.Add(sigs[i].(*Signature).s)
}
return &Signature{s: &signature}
}
// Aggregate is an alias for AggregateSignatures, defined to conform to BLS specification.
//
// In IETF draft BLS specification:
// Aggregate(signature_1, ..., signature_n) -> signature: an
// aggregation algorithm that compresses a collection of signatures
// into a single signature.
//
// In ETH2.0 specification:
// def Aggregate(signatures: Sequence[BLSSignature]) -> BLSSignature
//
// Deprecated: Use AggregateSignatures.
func Aggregate(sigs []iface.Signature) iface.Signature {
return AggregateSignatures(sigs)
}
// VerifyMultipleSignatures verifies a non-singular set of signatures and its respective pubkeys and messages.
// This method provides a safe way to verify multiple signatures at once. We pick a number randomly from 1 to max
// uint64 and then multiply the signature by it. We continue doing this for all signatures and its respective pubkeys.
// S* = S_1 * r_1 + S_2 * r_2 + ... + S_n * r_n
// P'_{i,j} = P_{i,j} * r_i
// e(S*, G) = \prod_{i=1}^n \prod_{j=1}^{m_i} e(P'_{i,j}, M_{i,j})
// Using this we can verify multiple signatures safely.
func VerifyMultipleSignatures(sigs []iface.Signature, msgs [][32]byte, pubKeys []iface.PublicKey) (bool, error) {
if featureconfig.Get().SkipBLSVerify {
return true, nil
}
if len(sigs) == 0 || len(pubKeys) == 0 {
return false, nil
}
length := len(sigs)
if length != len(pubKeys) || length != len(msgs) {
return false, errors.Errorf("provided signatures, pubkeys and messages have differing lengths. S: %d, P: %d,M %d",
length, len(pubKeys), len(msgs))
}
// Use a secure source of RNG.
newGen := rand.NewGenerator()
randNums := make([]bls12.Fr, length)
signatures := make([]bls12.G2, length)
msgSlices := make([]byte, 0, 32*len(msgs))
for i := 0; i < len(sigs); i++ {
rNum := newGen.Uint64()
if err := randNums[i].SetLittleEndian(bytesutil.Bytes8(rNum)); err != nil {
return false, err
}
// Cast signature to a G2 value
signatures[i] = *bls12.CastFromSign(sigs[i].(*Signature).s)
// Flatten message to single byte slice to make it compatible with herumi.
msgSlices = append(msgSlices, msgs[i][:]...)
}
// Perform multi scalar multiplication on all the relevant G2 points
// with our generated random numbers.
finalSig := new(bls12.G2)
bls12.G2MulVec(finalSig, signatures, randNums)
multiKeys := make([]bls12.PublicKey, length)
for i := 0; i < len(pubKeys); i++ {
// Perform scalar multiplication for the corresponding g1 points.
g1 := new(bls12.G1)
bls12.G1Mul(g1, bls12.CastFromPublicKey(pubKeys[i].(*PublicKey).p), &randNums[i])
multiKeys[i] = *bls12.CastToPublicKey(g1)
}
aggSig := bls12.CastToSign(finalSig)
return aggSig.AggregateVerifyNoCheck(multiKeys, msgSlices), nil
}
// Marshal a signature into a LittleEndian byte slice.
func (s *Signature) Marshal() []byte {
if featureconfig.Get().SkipBLSVerify {
return make([]byte, params.BeaconConfig().BLSSignatureLength)
}
return s.s.Serialize()
}
// Copy returns a full deep copy of a signature.
func (s *Signature) Copy() iface.Signature {
return &Signature{s: &*s.s}
}