prysm-pulse/beacon-chain/state/stateutil/validator_root.go
james-prysm e0eee87bf4
Improve beacon chain coverage Part 1 (#11080)
* first node test

* adding in configuration flags for code coverage

* adding line to remove file on unit test

* adding new test for compressed field trie but is currently broken

* changing limit on trie

* adding new trie length coverage

* adding in test for empty copy of trie

* adding more trie tests

* adding new field trie

* adding more field trie tests

* adding clarity to chunking equation

* fixing linting

* clarifying function for limit

* updating native state settings to improve ease of future unit tests

* improving unit test

* fixing unit tests

* adding more tests and fixing linting

* adding more coverage and removing unused file

* increasing node coverage

* adding new test for checking config for booleans

* fixing db test

* fixing linting

* adding signing root test

* fixing linting

* removing accidently created beacondata

* switching not non native state

* reverting back to proto use for spec test

* reverting back to proto for some tests

* turning off native state on some tests

* switching more to proto state

* rolling back disablenativestate

* switching to native state in the state-native package for tests

* fixing linting

* fixing deepsource complaint

* fixing some tests to native state and removing some unused flag checks

* convert to native state

* fixing linting

* issues are being triggered by deleting the db this way so reverting change in hopes of changing this

* rolling back testing util

* rolling back some tests from native state

* rolling back db deletion

* test switching native state off after test runs

* fixing hasher test

* fixing altair and bellatrix hashers for native state

* Update beacon-chain/node/node_test.go

Co-authored-by: Radosław Kapka <rkapka@wp.pl>

* Update validator/rpc/auth_token_test.go

Co-authored-by: Radosław Kapka <rkapka@wp.pl>

* fixing imports

* adding altair proof test

Co-authored-by: Radosław Kapka <rkapka@wp.pl>
2022-08-16 16:19:01 +00:00

121 lines
4.5 KiB
Go

package stateutil
import (
"encoding/binary"
"github.com/pkg/errors"
fieldparams "github.com/prysmaticlabs/prysm/v3/config/fieldparams"
"github.com/prysmaticlabs/prysm/v3/crypto/hash"
"github.com/prysmaticlabs/prysm/v3/encoding/bytesutil"
"github.com/prysmaticlabs/prysm/v3/encoding/ssz"
ethpb "github.com/prysmaticlabs/prysm/v3/proto/prysm/v1alpha1"
)
// ValidatorRootWithHasher describes a method from which the hash tree root
// of a validator is returned.
func ValidatorRootWithHasher(hasher ssz.HashFn, validator *ethpb.Validator) ([32]byte, error) {
fieldRoots, err := ValidatorFieldRoots(hasher, validator)
if err != nil {
return [32]byte{}, err
}
return ssz.BitwiseMerkleize(hasher, fieldRoots, uint64(len(fieldRoots)), uint64(len(fieldRoots)))
}
// ValidatorFieldRoots describes a method from which the hash tree root
// of a validator is returned.
func ValidatorFieldRoots(hasher ssz.HashFn, validator *ethpb.Validator) ([][32]byte, error) {
var fieldRoots [][32]byte
if validator != nil {
pubkey := bytesutil.ToBytes48(validator.PublicKey)
withdrawCreds := bytesutil.ToBytes32(validator.WithdrawalCredentials)
effectiveBalanceBuf := [32]byte{}
binary.LittleEndian.PutUint64(effectiveBalanceBuf[:8], validator.EffectiveBalance)
// Slashed.
slashBuf := [32]byte{}
if validator.Slashed {
slashBuf[0] = uint8(1)
} else {
slashBuf[0] = uint8(0)
}
activationEligibilityBuf := [32]byte{}
binary.LittleEndian.PutUint64(activationEligibilityBuf[:8], uint64(validator.ActivationEligibilityEpoch))
activationBuf := [32]byte{}
binary.LittleEndian.PutUint64(activationBuf[:8], uint64(validator.ActivationEpoch))
exitBuf := [32]byte{}
binary.LittleEndian.PutUint64(exitBuf[:8], uint64(validator.ExitEpoch))
withdrawalBuf := [32]byte{}
binary.LittleEndian.PutUint64(withdrawalBuf[:8], uint64(validator.WithdrawableEpoch))
// Public key.
pubKeyRoot, err := merkleizePubkey(hasher, pubkey[:])
if err != nil {
return [][32]byte{}, err
}
fieldRoots = [][32]byte{pubKeyRoot, withdrawCreds, effectiveBalanceBuf, slashBuf, activationEligibilityBuf,
activationBuf, exitBuf, withdrawalBuf}
}
return fieldRoots, nil
}
// Uint64ListRootWithRegistryLimit computes the HashTreeRoot Merkleization of
// a list of uint64 and mixed with registry limit.
func Uint64ListRootWithRegistryLimit(balances []uint64) ([32]byte, error) {
hasher := hash.CustomSHA256Hasher()
balancesChunks, err := PackUint64IntoChunks(balances)
if err != nil {
return [32]byte{}, errors.Wrap(err, "could not pack balances into chunks")
}
balancesRootsRoot, err := ssz.BitwiseMerkleize(hasher, balancesChunks, uint64(len(balancesChunks)), ValidatorLimitForBalancesChunks())
if err != nil {
return [32]byte{}, errors.Wrap(err, "could not compute balances merkleization")
}
balancesLengthRoot := make([]byte, 32)
binary.LittleEndian.PutUint64(balancesLengthRoot, uint64(len(balances)))
return ssz.MixInLength(balancesRootsRoot, balancesLengthRoot), nil
}
// ValidatorLimitForBalancesChunks returns the limit of validators after going through the chunking process.
func ValidatorLimitForBalancesChunks() uint64 {
maxValidatorLimit := uint64(fieldparams.ValidatorRegistryLimit)
bytesInUint64 := uint64(8)
return (maxValidatorLimit*bytesInUint64 + 31) / 32 // round to nearest chunk
}
// PackUint64IntoChunks packs a list of uint64 values into 32 byte roots.
func PackUint64IntoChunks(vals []uint64) ([][32]byte, error) {
// Initialize how many uint64 values we can pack
// into a single chunk(32 bytes). Each uint64 value
// would take up 8 bytes.
numOfElems := 4
sizeOfElem := 32 / numOfElems
// Determine total number of chunks to be
// allocated to provided list of unsigned
// 64-bit integers.
numOfChunks := len(vals) / numOfElems
// Add an extra chunk if the list size
// is not a perfect multiple of the number
// of elements.
if len(vals)%numOfElems != 0 {
numOfChunks++
}
chunkList := make([][32]byte, numOfChunks)
for idx, b := range vals {
// In order to determine how to pack in the uint64 value by index into
// our chunk list we need to determine a few things.
// 1) The chunk which the particular uint64 value corresponds to.
// 2) The position of the value in the chunk itself.
//
// Once we have determined these 2 values we can simply find the correct
// section of contiguous bytes to insert the value in the chunk.
chunkIdx := idx / numOfElems
idxInChunk := idx % numOfElems
chunkPos := idxInChunk * sizeOfElem
binary.LittleEndian.PutUint64(chunkList[chunkIdx][chunkPos:chunkPos+sizeOfElem], b)
}
return chunkList, nil
}