Go to file
2021-11-11 08:34:13 +00:00
.buildkite Rename to Erigon (#2018) 2021-05-26 11:35:39 +01:00
.github Update ci.yml (#2713) 2021-09-21 16:31:07 +07:00
accounts/abi Switch sentry mock to pool v2 (#2885) 2021-10-28 21:18:34 +07:00
cmd Fix SendHeaderRequest peer minBlock (#2946) 2021-11-11 08:34:13 +00:00
common HashState stage genesis sync - read PlainState only once (#2884) 2021-11-06 16:37:33 +07:00
consensus Added serenity consensus engine (#2893) 2021-11-01 09:40:36 +07:00
core Update skip_analysis.go (#2915) 2021-11-04 11:15:01 +00:00
crypto RemoteRPC: coherentCache for kv.Code; LocalRPC: enable small blocksLRU (#2815) 2021-10-12 12:04:04 +07:00
design auto-format code by prettier (similar to gofmt) (#405) 2020-03-25 12:45:21 +07:00
docs save snippet to add Geth to dev net 2021-10-20 15:26:13 +07:00
eth Check existence before write - because WriteRawBody isn't idempotent (it allocates new sequence range for transactions on every call) (#2941) 2021-11-11 10:17:33 +07:00
ethdb dropped eth65 2021-11-09 20:07:23 +01:00
ethstats Apache licensed logger (#2460) 2021-07-29 17:23:23 +07:00
event rename (#1978) 2021-05-20 19:25:53 +01:00
hooks DockerHub support (#2325) 2021-07-09 16:40:11 +07:00
internal Lcp must be int32 (#2934) 2021-11-09 17:47:12 +07:00
libmdbx@113162b651 mdbx_v0.11.1 2021-10-29 08:17:09 +07:00
metrics RemoteRPC: coherentCache for kv.Code; LocalRPC: enable small blocksLRU (#2815) 2021-10-12 12:04:04 +07:00
migrations save (#2913) 2021-11-04 17:23:45 +07:00
node Inner errors (#2774) 2021-10-04 22:16:52 +07:00
p2p Remove Docker from deps (#2930) 2021-11-08 21:11:57 +07:00
params begin 2021.11.02 release cycle 2021-11-04 20:58:21 +01:00
rlp Inner errors (#2774) 2021-10-04 22:16:52 +07:00
rpc No json rpc streaming (#2779) 2021-10-05 16:12:43 +07:00
tests tests, secp256k1: secp256k1 fuzzer implementation (#2906) 2021-11-04 12:16:26 +00:00
turbo Fix header skeleton (#2945) 2021-11-11 07:53:32 +00:00
visual Continue comparison of genesis block with geth, expand long values (#223) 2019-12-06 12:03:12 +00:00
.dockerignore switch to mdbx-go module, and db-tools to libmdbx submodule (#2199) 2021-06-19 21:30:12 +01:00
.gitattributes .gitattributes: enable solidity highlighting on github (#16425) 2018-04-03 15:21:24 +02:00
.gitignore Sokol v0: can process 1-st block (#2310) 2021-07-08 19:40:43 +07:00
.gitmodules switch to mdbx-go module, and db-tools to libmdbx submodule (#2199) 2021-06-19 21:30:12 +01:00
.golangci.yml enable http body close linter (#2479) 2021-08-02 14:52:54 +07:00
.readthedocs.yml first sphinx doc portion (#1144) 2020-09-27 20:40:48 +01:00
AUTHORS build: deduplicate same authors with different casing 2019-07-22 12:31:11 +03:00
COPYING COYPING: restore the full text text of GPL (#21568) 2020-10-06 14:12:09 +02:00
COPYING.LESSER all: update license information 2015-07-07 14:12:44 +02:00
DEV_CHAIN.md Dev Chain Tutorial (#2936) 2021-11-09 17:48:16 +07:00
docker-compose.yml grafana: up to version v8.2.2 2021-10-27 08:49:20 +07:00
Dockerfile derive_chainid_no_alloc 2021-11-01 15:02:43 +07:00
go.mod updated erigon-lib 2021-11-10 21:02:19 +01:00
go.sum updated erigon-lib 2021-11-10 21:02:19 +01:00
interfaces.go rename (#1978) 2021-05-20 19:25:53 +01:00
Makefile add hack to dockerfile 2021-10-31 07:39:47 +07:00
nightly.sh Nightly tests (#444) 2020-04-12 19:37:15 +01:00
oss-fuzz.sh tests, secp256k1: secp256k1 fuzzer implementation (#2906) 2021-11-04 12:16:26 +00:00
README.md Merge pull request #2939 from ledgerwatch/enginev1 2021-11-10 21:44:39 +01:00
RELEASE_INSTRUCTIONS.md Rename to Erigon (#2018) 2021-05-26 11:35:39 +01:00
rules.go unify stage params (#2384) 2021-07-17 09:09:56 +07:00
TESTING.md Rename to Erigon (#2018) 2021-05-26 11:35:39 +01:00
tools.go Linter: to check tx.Rollback() by ruleguard (#2383) 2021-07-16 20:23:54 +07:00
wmake.ps1 Refine git search (#2623) 2021-09-03 08:37:19 +07:00

Erigon

Erigon is an implementation of Ethereum (aka "Ethereum client"), on the efficiency frontier, written in Go.

Build status

NB! In-depth links are marked by the microscope sign (🔬)

Disclaimer: this software is currently a tech preview. We will do our best to keep it stable and make no breaking changes but we don't guarantee anything. Things can and will break.

System Requirements

Recommend 2Tb storage space on a single partition: 1.3Tb state, 200GB temp files (can symlink or mount folder <datadir>/etl-tmp to another disk).

RAM: 16GB, 64-bit architecture, Golang version >= 1.16

🔬 more info on disk storage is here)

Usage

Getting Started

git clone --recurse-submodules -j8 https://github.com/ledgerwatch/erigon.git
cd erigon
make erigon
./build/bin/erigon

Testnets

If you would like to give Erigon a try, but do not have spare 2Tb on your driver, a good option is to start syncing one of the public testnets, Görli. It syncs much quicker, and does not take so much disk space:

git clone --recurse-submodules -j8 https://github.com/ledgerwatch/erigon.git
cd erigon
make erigon
./build/bin/erigon --datadir goerli --chain goerli

Please note the --datadir option that allows you to store Erigon files in a non-default location, in this example, in goerli subdirectory of the current directory. Name of the directory --datadir does not have to match the name of the chain in --chain.

Mining

Support only remote-miners.

  • To enable, add --mine --miner.etherbase=... or --mine --miner.miner.sigkey=... flags.
  • Other supported options: --miner.extradata, --miner.notify, --miner.gaslimit, --miner.gasprice , --miner.gastarget
  • RPCDaemon supports methods: eth_coinbase , eth_hashrate, eth_mining, eth_getWork, eth_submitWork, eth_submitHashrate
  • RPCDaemon supports websocket methods: newPendingTransaction
  • TODO:
    • we don't broadcast mined blocks to p2p-network yet, but it's easy to accomplish
    • eth_newPendingTransactionFilter
    • eth_newBlockFilter
    • eth_newFilter
    • websocket Logs

🔬 Detailed mining explanation is here.

Windows

Windows users may run erigon in 3 possible ways:

  • Build executable binaries natively for Windows using provided wmake.ps1 PowerShell script. Usage syntax is the same as make command so you have to run .\wmake.ps1 [-target] <targetname>. Example: .\wmake.ps1 erigon builds erigon executable. All binaries are placed in .\build\bin\ subfolder. There are some requirements for a successful native build on windows :

    • Git for Windows must be installed. If you're cloning this repository is very likely you already have it
    • GO Programming Language must be installed. Minimum required version is 1.16
    • If you need to build MDBX tools (i.e. .\wmake.ps1 db-tools) then Chocolatey package manager for Windows must be installed. By Chocolatey you need to install the following components : cmake, make, mingw by choco install cmake make mingw.

    Important note about Anti-Viruses During MinGW's compiler detection phase some temporary executables are generated to test compiler capabilities. It's been reported some anti-virus programs detect those files as possibly infected by Win64/Kryptic.CIS trojan horse (or a variant of it). Although those are false positives we have no control over 100+ vendors of security products for Windows and their respective detection algorythms and we understand this might make your experience with Windows builds uncomfortable. To workaround the issue you might either set exlusions for your antivirus specifically for build\bin\mdbx\CMakeFiles sub-folder of the cloned repo or you can run erigon using the following other two options

  • Use Docker : see docker-compose.yml

  • Use WSL (Windows Subsystem for Linux) strictly on version 2. Under this option you can build Erigon just as you would on a regular Linux distribution. You can point your data also to any of the mounted Windows partitions ( eg. /mnt/c/[...], /mnt/d/[...] etc) but in such case be advised performance is impacted: this is due to the fact those mount points use DrvFS which is a network file system and, additionally, MDBX locks the db for exclusive access which implies only one process at a time can access data. This has consequences on the running of rpcdaemon which has to be configured as Remote DB even if it is executed on the very same computer. If instead your data is hosted on the native Linux filesystem non limitations apply. Please also note the default WSL2 environment has its own IP address which does not match the one of the network interface of Windows host: take this into account when configuring NAT for port 30303 on your router.

Beacon Chain

Erigon can be used as an execution-layer for beacon chain consensus clients (Eth2). Default configuration is ok. Eth2 relies on availability of receipts - don't prune them: don't add character r to --prune flag. However, old receipes are not needed for Eth2 and you can safely prune them with --prune.r.before=11184524 in combination with --prune htc.

You must run the JSON-RPC daemon in addition to the Erigon.

If beacon chain client on a different device: add --http.addr 0.0.0.0 (JSON-RPC daemon listen on localhost by default) .

Once the JSON-RPC daemon is running, all you need to do is point your beacon chain client to <ip address>:8545, where is either localhost or the IP address of the device running the JSON-RPC daemon.

Erigon has been tested with Lighthouse however all other clients that support JSON-RPC should also work.

Dev Chain

🔬 Detailed explanation is DEV_CHAIN.

Key features

🔬 See more detailed overview of functionality and current limitations. It is being updated on recurring basis.

More Efficient State Storage

Flat KV storage. Erigon uses a key-value database and storing accounts and storage in a simple way.

🔬 See our detailed DB walkthrough here.

Preprocessing. For some operations, Erigon uses temporary files to preprocess data before inserting it into the main DB. That reduces write amplification and DB inserts are orders of magnitude quicker.

🔬 See our detailed ETL explanation here.

Plain state.

Single accounts/state trie. Erigon uses a single Merkle trie for both accounts and the storage.

Faster Initial Sync

Erigon uses a rearchitected full sync algorithm from Go-Ethereum that is split into "stages".

🔬 See more detailed explanation in the Staged Sync Readme

It uses the same network primitives and is compatible with regular go-ethereum nodes that are using full sync, you do not need any special sync capabilities for Erigon to sync.

When reimagining the full sync, with focus on batching data together and minimize DB overwrites. That makes it possible to sync Ethereum mainnet in under 2 days if you have a fast enough network connection and an SSD drive.

Examples of stages are:

  • Downloading headers;

  • Downloading block bodies;

  • Recovering senders' addresses;

  • Executing blocks;

  • Validating root hashes and building intermediate hashes for the state Merkle trie;

  • [...]

JSON-RPC daemon

In Erigon RPC calls are extracted out of the main binary into a separate daemon. This daemon can use both local or remote DBs. That means, that this RPC daemon doesn't have to be running on the same machine as the main Erigon binary or it can run from a snapshot of a database for read-only calls.

🔬 See RPC-Daemon docs

For local DB

This is only possible if RPC daemon runs on the same computer as Erigon. This mode uses shared memory access to the database of Erigon, which has better performance than accessing via TPC socket (see "For remote DB" section below). Provide both --datadir and --private.api.addr options:

make erigon
./build/bin/erigon --private.api.addr=localhost:9090
make rpcdaemon
./build/bin/rpcdaemon --datadir=<your_data_dir> --private.api.addr=localhost:9090 --http.api=eth,erigon,web3,net,debug,trace,txpool

For remote DB

This works regardless of whether RPC daemon is on the same computer with Erigon, or on a different one. They use TPC socket connection to pass data between them. To use this mode, run Erigon in one terminal window

make erigon
./build/bin/erigon --private.api.addr=localhost:9090
make rpcdaemon
./build/bin/rpcdaemon --private.api.addr=localhost:9090 --http.api=eth,erigon,web3,net,debug,trace,txpool

gRPC ports: 9090 erigon, 9091 sentry, 9092 consensus engine, 9093 snapshot downloader, 9094 TxPool

Supported JSON-RPC calls (eth, debug , net, web3):

For a details on the implementation status of each command, see this table.

Run all components by docker-compose

Next command starts: Erigon on port 30303, rpcdaemon 8545, prometheus 9090, grafana 3000

make docker-compose
# or
XDG_DATA_HOME=/preferred/data/folder make docker-compose

Makefile creates the initial directories for erigon, prometheus and grafana. The PID namespace is shared between erigon and rpcdaemon which is required to open Erigon's DB from another process (RPCDaemon local-mode). See: https://github.com/ledgerwatch/erigon/pull/2392/files

Windows support for docker-compose is not ready yet. Please help us with .ps1 port

Grafana dashboard

docker-compose up prometheus grafana, detailed docs.

Prune old data

Disabled by default. To enable see ./build/bin/erigon --help for flags --prune

FAQ

How much RAM do I need

  • Baseline (ext4 SSD): 16Gb RAM sync takes 5 days, 32Gb - 4 days, 64Gb - 3 days
  • +1 day on "zfs compression=off". +2 days on "zfs compression=on" (2x compression ratio). +3 days on btrfs.
  • -1 day on NVMe

Detailed explanation: ./docs/programmers_guide/db_faq.md

Default Ports and Protocols / Firewalls?

erigon ports

Port Protocol Purpose Expose
30303 TCP & UDP eth/66 peering Public
9090 TCP gRPC Connections Private

Typically 30303 and 30304 are exposed to the internet to allow incoming peering connections. 9090 is exposed only internally for rpcdaemon or other connections, (e.g. rpcdaemon -> erigon)

rpcdaemon ports

Port Protocol Purpose Expose
8545 TCP HTTP & WebSockets Private

Typically 8545 is exposed only interally for JSON-RPC queries. Both HTTP and WebSocket connections are on the same port.

sentry ports

Port Protocol Purpose Expose
30303 TCP & UDP Peering Public
9091 TCP gRPC Connections Private

Typically a sentry process will run one eth/xx protocl (e.g. eth/66) and will be exposed to the internet on 30303. Port 9091 is for internal gRCP connections (e.g erigon -> sentry)

Other ports

Port Protocol Purpose Expose
6060 TCP pprof Private
6060 TCP metrics Private

Optional flags can be enabled that enable pprof or metrics (or both) - however, they both run on 6060 by default, so you'll have to change one if you want to run both at the same time. use --help with the binary for more info.

Reserved for future use: gRPC ports: 9092 consensus engine, 9093 snapshot downloader, 9094 TxPool

How to get diagnostic for bug report?

  • Get stack trace: kill -SIGUSR1 <pid>, get trace and stop: kill -6 <pid>
  • Get CPU profiling: add --pprof flag run go tool pprof -png http://127.0.0.1:6060/debug/pprof/profile\?seconds\=20 > cpu.png
  • Get RAM profiling: add --pprof flag run go tool pprof -inuse_space -png http://127.0.0.1:6060/debug/pprof/heap > mem.png

How to run local devnet?

🔬 Detailed explanation is here.

Getting in touch

Erigon Discord Server

The main discussions are happening on our Discord server. To get an invite, send an email to tg [at] torquem.ch with your name, occupation, a brief explanation of why you want to join the Discord, and how you heard about Erigon.

Reporting security issues/concerns

Send an email to security [at] torquem.ch.

Team

Core contributors (in alpabetical order of first names):

Thanks to:

  • All contributors of Erigon

  • All contributors of Go-Ethereum

  • Our special respect and graditude is to the core team of Go-Ethereum. Keep up the great job!

Happy testing! 🥤

Known issues

htop shows incorrect memory usage

Erigon's internal DB (MDBX) using MemoryMap - when OS does manage all read, write, cache operations instead of Application (linux , windows)

htop on column res shows memory of "App + OS used to hold page cache for given App", but it's not informative, because if htop says that app using 90% of memory you still can run 3 more instances of app on the same machine - because most of that 90% is "OS pages cache".
OS automatically free this cache any time it needs memory. Smaller "page cache size" may not impact performance of Erigon at all.

Next tools show correct memory usage of Erigon:

  • vmmap -summary PID | grep -i "Physical footprint". Without grep you can see details
    • section MALLOC ZONE column Resident Size shows App memory usage, section REGION TYPE column Resident Size shows OS pages cache size.
  • Prometheus dashboard shows memory of Go app without OS pages cache (make prometheus, open in browser localhost:3000, credentials admin/admin)
  • cat /proc/<PID>/smaps

Erigon uses ~4Gb of RAM during genesis sync and ~1Gb during normal work. OS pages cache can utilize unlimited amount of memory.

Warning: Multiple instances of Erigon on same machine will touch Disk concurrently, it impacts performance - one of main Erigon optimisations: "reduce Disk random access". "Blocks Execution stage" still does much random reads - this is reason why it's slowest stage. We do not recommend run multiple genesis syncs on same Disk. If genesis sync passed, then it's fine to run multiple Erigon on same Disk.

Blocks Execution is slow on cloud-network-drives

Please read https://github.com/ledgerwatch/erigon/issues/1516#issuecomment-811958891 In short: network-disks are bad for blocks execution - because blocks execution reading data from db non-parallel non-batched way.

Filesystem's background features are expensive

For example: btrfs's autodefrag option - may increase write IO 100x times

Gnome Tracker can kill Erigon

Gnome Tracker - detecting miners and kill them.