erigon-pulse/turbo/trie/hashbuilder.go
Jason Yellick 4e9b378a5d
Enable negative Merkle proofs for eth_getProof (#7393)
This addresses the last known deficiency of the eth_getProof
implementation. The previous code would return an error in the event
that the element was not found in the trie. EIP-1186 allows for
'negative' proofs where a proof demonstrates that an element cannot be
in the trie, so this commit updates the logic to support that case.

Co-authored-by: Jason Yellick <jason@enya.ai>
2023-04-27 10:38:45 +07:00

709 lines
21 KiB
Go

package trie
import (
"bytes"
"fmt"
"io"
"math/bits"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
length2 "github.com/ledgerwatch/erigon-lib/common/length"
"golang.org/x/crypto/sha3"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/core/types/accounts"
"github.com/ledgerwatch/erigon/crypto"
"github.com/ledgerwatch/erigon/rlp"
"github.com/ledgerwatch/erigon/turbo/rlphacks"
)
const hashStackStride = length2.Hash + 1 // + 1 byte for RLP encoding
var EmptyCodeHash = crypto.Keccak256Hash(nil)
// HashBuilder implements the interface `structInfoReceiver` and opcodes that the structural information of the trie
// is comprised of
// DESCRIBED: docs/programmers_guide/guide.md#separation-of-keys-and-the-structure
type HashBuilder struct {
byteArrayWriter *ByteArrayWriter
hashStack []byte // Stack of sub-slices, each 33 bytes each, containing RLP encodings of node hashes (or of nodes themselves, if shorter than 32 bytes)
nodeStack []node // Stack of nodes
acc accounts.Account // Working account instance (to avoid extra allocations)
sha keccakState // Keccak primitive that can absorb data (Write), and get squeezed to the hash out (Read)
hashBuf [hashStackStride]byte // RLP representation of hash (or un-hashes value)
keyPrefix [1]byte
lenPrefix [4]byte
valBuf [128]byte // Enough to accommodate hash encoding of any account
b [1]byte // Buffer for single byte
prefixBuf [8]byte
trace bool // Set to true when HashBuilder is required to print trace information for diagnostics
topHashesCopy []byte
// proofElement is set when the next element computation should have its RLP
// encoding retained. Additionally, the account root storage hash and storage
// values are stored into this field when set and in the relavent codepath.
proofElement *proofElement
}
// NewHashBuilder creates a new HashBuilder
func NewHashBuilder(trace bool) *HashBuilder {
return &HashBuilder{
sha: sha3.NewLegacyKeccak256().(keccakState),
byteArrayWriter: &ByteArrayWriter{},
trace: trace,
}
}
// Reset makes the HashBuilder suitable for reuse
func (hb *HashBuilder) Reset() {
if len(hb.hashStack) > 0 {
hb.hashStack = hb.hashStack[:0]
}
if len(hb.nodeStack) > 0 {
hb.nodeStack = hb.nodeStack[:0]
}
hb.topHashesCopy = hb.topHashesCopy[:0]
hb.proofElement = nil
}
// setProofElement sets the proofElement field in which the relevant methods
// will check and additionally write the proof bytes to during trie computation.
func (hb *HashBuilder) setProofElement(pe *proofElement) {
hb.proofElement = pe
}
func (hb *HashBuilder) leaf(length int, keyHex []byte, val rlphacks.RlpSerializable) error {
if hb.trace {
fmt.Printf("LEAF %d\n", length)
}
if length < 0 {
return fmt.Errorf("length %d", length)
}
if hb.proofElement != nil {
hb.proofElement.storageKey = common.CopyBytes(keyHex[:len(keyHex)-1])
hb.proofElement.storageValue = new(uint256.Int).SetBytes(val.RawBytes())
}
key := keyHex[len(keyHex)-length:]
s := &shortNode{Key: common.CopyBytes(key), Val: valueNode(common.CopyBytes(val.RawBytes()))}
hb.nodeStack = append(hb.nodeStack, s)
if err := hb.leafHashWithKeyVal(key, val); err != nil {
return err
}
copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:])
s.ref.len = hb.hashStack[len(hb.hashStack)-length2.Hash-1] - 0x80
if s.ref.len > 32 {
s.ref.len = hb.hashStack[len(hb.hashStack)-length2.Hash-1] - 0xc0 + 1
copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash-1:])
}
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
// To be called internally
func (hb *HashBuilder) leafHashWithKeyVal(key []byte, val rlphacks.RlpSerializable) error {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
ni = 1
}
}
if compactLen > 1 {
hb.keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
err := hb.completeLeafHash(kp, kl, compactLen, key, compact0, ni, val)
if err != nil {
return err
}
//fmt.Printf("leafHashWithKeyVal [%x]=>[%x]\nHash [%x]\n", key, val, hb.hashBuf[:])
hb.hashStack = append(hb.hashStack, hb.hashBuf[:]...)
if len(hb.hashStack) > hashStackStride*len(hb.nodeStack) {
hb.nodeStack = append(hb.nodeStack, nil)
}
return nil
}
func (hb *HashBuilder) completeLeafHash(kp, kl, compactLen int, key []byte, compact0 byte, ni int, val rlphacks.RlpSerializable) error {
totalLen := kp + kl + val.DoubleRLPLen()
pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalLen)
var writer io.Writer
var reader io.Reader
if totalLen+pt < length2.Hash {
// Embedded node
hb.byteArrayWriter.Setup(hb.hashBuf[:], 0)
writer = hb.byteArrayWriter
} else {
hb.sha.Reset()
writer = hb.sha
reader = hb.sha
}
// Collect a copy of the hash input if needed for an eth_getProof
if hb.proofElement != nil {
writer = io.MultiWriter(writer, &hb.proofElement.proof)
}
if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil {
return err
}
if _, err := writer.Write(hb.keyPrefix[:kp]); err != nil {
return err
}
hb.b[0] = compact0
if _, err := writer.Write(hb.b[:]); err != nil {
return err
}
for i := 1; i < compactLen; i++ {
hb.b[0] = key[ni]*16 + key[ni+1]
if _, err := writer.Write(hb.b[:]); err != nil {
return err
}
ni += 2
}
if err := val.ToDoubleRLP(writer, hb.prefixBuf[:]); err != nil {
return err
}
if reader != nil {
hb.hashBuf[0] = 0x80 + length2.Hash
if _, err := reader.Read(hb.hashBuf[1:]); err != nil {
return err
}
}
return nil
}
func (hb *HashBuilder) leafHash(length int, keyHex []byte, val rlphacks.RlpSerializable) error {
if hb.trace {
fmt.Printf("LEAFHASH %d\n", length)
}
if length < 0 {
return fmt.Errorf("length %d", length)
}
key := keyHex[len(keyHex)-length:]
return hb.leafHashWithKeyVal(key, val)
}
func (hb *HashBuilder) accountLeaf(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldSet uint32, accountCodeSize int) (err error) {
if hb.trace {
fmt.Printf("ACCOUNTLEAF %d (%b)\n", length, fieldSet)
}
fullKey := keyHex[:len(keyHex)-1]
key := keyHex[len(keyHex)-length:]
copy(hb.acc.Root[:], EmptyRoot[:])
copy(hb.acc.CodeHash[:], EmptyCodeHash[:])
hb.acc.Nonce = nonce
hb.acc.Balance.Set(balance)
hb.acc.Initialised = true
hb.acc.Incarnation = incarnation
popped := 0
var root node
if fieldSet&uint32(4) != 0 {
copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride])
if hb.acc.Root != EmptyRoot {
// Root is on top of the stack
root = hb.nodeStack[len(hb.nodeStack)-popped-1]
if root == nil {
root = hashNode{hash: common.CopyBytes(hb.acc.Root[:])}
}
}
popped++
}
var accountCode codeNode
if fieldSet&uint32(8) != 0 {
copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride])
var ok bool
if !bytes.Equal(hb.acc.CodeHash[:], EmptyCodeHash[:]) {
stackTop := hb.nodeStack[len(hb.nodeStack)-popped-1]
if stackTop != nil { // if we don't have any stack top it might be okay because we didn't resolve the code yet (stateful resolver)
// but if we have something on top of the stack that isn't `nil`, it has to be a codeNode
accountCode, ok = stackTop.(codeNode)
if !ok {
return fmt.Errorf("unexpected node type on the node stack, wanted codeNode, got %T:%s", stackTop, stackTop)
}
}
}
popped++
}
if hb.proofElement != nil {
// The storageRoot is not stored with the account info, therefore
// we capture it with the account proof element. Note, we also store the
// full key as this root could be for a different account in the negative
// case.
hb.proofElement.storageRootKey = common.CopyBytes(fullKey)
hb.proofElement.storageRoot = hb.acc.Root
}
var accCopy accounts.Account
accCopy.Copy(&hb.acc)
if !bytes.Equal(accCopy.CodeHash[:], EmptyCodeHash[:]) && accountCode != nil {
accountCodeSize = len(accountCode)
}
a := &accountNode{accCopy, root, true, accountCode, accountCodeSize}
s := &shortNode{Key: common.CopyBytes(key), Val: a}
// this invocation will take care of the popping given number of items from both hash stack and node stack,
// pushing resulting hash to the hash stack, and nil to the node stack
if err = hb.accountLeafHashWithKey(key, popped); err != nil {
return err
}
copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:])
s.ref.len = 32
// Replace top of the stack
hb.nodeStack[len(hb.nodeStack)-1] = s
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) accountLeafHash(length int, keyHex []byte, balance *uint256.Int, nonce uint64, incarnation uint64, fieldSet uint32) (err error) {
if hb.trace {
fmt.Printf("ACCOUNTLEAFHASH %d (%b)\n", length, fieldSet)
}
key := keyHex[len(keyHex)-length:]
hb.acc.Nonce = nonce
hb.acc.Balance.Set(balance)
hb.acc.Initialised = true
hb.acc.Incarnation = incarnation
popped := 0
if fieldSet&AccountFieldStorageOnly != 0 {
copy(hb.acc.Root[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride])
popped++
} else {
copy(hb.acc.Root[:], EmptyRoot[:])
}
if fieldSet&AccountFieldCodeOnly != 0 {
copy(hb.acc.CodeHash[:], hb.hashStack[len(hb.hashStack)-popped*hashStackStride-length2.Hash:len(hb.hashStack)-popped*hashStackStride])
popped++
} else {
copy(hb.acc.CodeHash[:], EmptyCodeHash[:])
}
return hb.accountLeafHashWithKey(key, popped)
}
// To be called internally
func (hb *HashBuilder) accountLeafHashWithKey(key []byte, popped int) error {
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 48 + key[0] // Odd (1<<4) + first nibble
ni = 1
} else {
compact0 = 32
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 16 + key[0] // Odd (1<<4) + first nibble
ni = 1
}
}
if compactLen > 1 {
hb.keyPrefix[0] = byte(128 + compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
valLen := hb.acc.EncodingLengthForHashing()
hb.acc.EncodeForHashing(hb.valBuf[:])
val := rlphacks.RlpEncodedBytes(hb.valBuf[:valLen])
err := hb.completeLeafHash(kp, kl, compactLen, key, compact0, ni, val)
if err != nil {
return err
}
if popped > 0 {
hb.hashStack = hb.hashStack[:len(hb.hashStack)-popped*hashStackStride]
hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-popped]
}
//fmt.Printf("accountLeafHashWithKey [%x]=>[%x]\nHash [%x]\n", key, val, hb.hashBuf[:])
hb.hashStack = append(hb.hashStack, hb.hashBuf[:]...)
hb.nodeStack = append(hb.nodeStack, nil)
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) extension(key []byte) error {
if hb.trace {
fmt.Printf("EXTENSION %x\n", key)
}
nd := hb.nodeStack[len(hb.nodeStack)-1]
var s *shortNode
switch n := nd.(type) {
case nil:
branchHash := common.CopyBytes(hb.hashStack[len(hb.hashStack)-length2.Hash:])
s = &shortNode{Key: common.CopyBytes(key), Val: hashNode{hash: branchHash}}
case *fullNode:
s = &shortNode{Key: common.CopyBytes(key), Val: n}
default:
return fmt.Errorf("wrong Val type for an extension: %T", nd)
}
hb.nodeStack[len(hb.nodeStack)-1] = s
if err := hb.extensionHash(key); err != nil {
return err
}
copy(s.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:])
s.ref.len = 32
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) extensionHash(key []byte) error {
writer := io.Writer(hb.sha)
if hb.proofElement != nil {
writer = io.MultiWriter(hb.sha, &hb.proofElement.proof)
}
if hb.trace {
fmt.Printf("EXTENSIONHASH %x\n", key)
}
branchHash := hb.hashStack[len(hb.hashStack)-hashStackStride:]
// Compute the total length of binary representation
var kp, kl int
// Write key
var compactLen int
var ni int
var compact0 byte
// https://github.com/ethereum/wiki/wiki/Patricia-Tree#specification-compact-encoding-of-hex-sequence-with-optional-terminator
if hasTerm(key) {
compactLen = (len(key)-1)/2 + 1
if len(key)&1 == 0 {
compact0 = 0x30 + key[0] // Odd: (3<<4) + first nibble
ni = 1
} else {
compact0 = 0x20
}
} else {
compactLen = len(key)/2 + 1
if len(key)&1 == 1 {
compact0 = 0x10 + key[0] // Odd: (1<<4) + first nibble
ni = 1
}
}
if compactLen > 1 {
hb.keyPrefix[0] = 0x80 + byte(compactLen)
kp = 1
kl = compactLen
} else {
kl = 1
}
totalLen := kp + kl + 33
pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalLen)
hb.sha.Reset()
if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil {
return err
}
if _, err := writer.Write(hb.keyPrefix[:kp]); err != nil {
return err
}
hb.b[0] = compact0
if _, err := writer.Write(hb.b[:]); err != nil {
return err
}
for i := 1; i < compactLen; i++ {
hb.b[0] = key[ni]*16 + key[ni+1]
if _, err := writer.Write(hb.b[:]); err != nil {
return err
}
ni += 2
}
//capture := common.CopyBytes(branchHash[:length2.Hash+1])
if _, err := writer.Write(branchHash[:length2.Hash+1]); err != nil {
return err
}
// Replace previous hash with the new one
if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-length2.Hash:]); err != nil {
return err
}
hb.hashStack[len(hb.hashStack)-hashStackStride] = 0x80 + length2.Hash
//fmt.Printf("extensionHash [%x]=>[%x]\nHash [%x]\n", key, capture, hb.hashStack[len(hb.hashStack)-hashStackStride:len(hb.hashStack)])
if _, ok := hb.nodeStack[len(hb.nodeStack)-1].(*fullNode); ok {
return fmt.Errorf("extensionHash cannot be emitted when a node is on top of the stack")
}
return nil
}
func (hb *HashBuilder) branch(set uint16) error {
if hb.trace {
fmt.Printf("BRANCH (%b)\n", set)
}
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
f := &fullNode{}
digits := bits.OnesCount16(set)
if len(hb.nodeStack) < digits {
return fmt.Errorf("len(hb.nodeStask) %d < digits %d", len(hb.nodeStack), digits)
}
nodes := hb.nodeStack[len(hb.nodeStack)-digits:]
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
var i int
for digit := uint(0); digit < 16; digit++ {
if ((1 << digit) & set) != 0 {
if nodes[i] == nil {
f.Children[digit] = hashNode{hash: common.CopyBytes(hashes[hashStackStride*i+1 : hashStackStride*(i+1)])}
} else {
f.Children[digit] = nodes[i]
}
i++
}
}
hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1]
hb.nodeStack[len(hb.nodeStack)-1] = f
if err := hb.branchHash(set); err != nil {
return err
}
copy(f.ref.data[:], hb.hashStack[len(hb.hashStack)-length2.Hash:])
f.ref.len = 32
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) branchHash(set uint16) error {
writer := io.Writer(hb.sha)
if hb.proofElement != nil {
writer = io.MultiWriter(hb.sha, &hb.proofElement.proof)
}
if hb.trace {
fmt.Printf("BRANCHHASH (%b)\n", set)
}
digits := bits.OnesCount16(set)
if len(hb.hashStack) < hashStackStride*digits {
return fmt.Errorf("len(hb.hashStack) %d < hashStackStride*digits %d", len(hb.hashStack), hashStackStride*digits)
}
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
// Calculate the size of the resulting RLP
totalSize := 17 // These are 17 length prefixes
var i int
for digit := uint(0); digit < 16; digit++ {
if ((1 << digit) & set) != 0 {
if hashes[hashStackStride*i] == 0x80+length2.Hash {
totalSize += length2.Hash
} else {
// Embedded node
totalSize += int(hashes[hashStackStride*i] - rlp.EmptyListCode)
}
i++
}
}
hb.sha.Reset()
pt := rlphacks.GenerateStructLen(hb.lenPrefix[:], totalSize)
if _, err := writer.Write(hb.lenPrefix[:pt]); err != nil {
return err
}
// Output hasState hashes or embedded RLPs
i = 0
//fmt.Printf("branchHash {\n")
hb.b[0] = rlp.EmptyStringCode
for digit := uint(0); digit < 17; digit++ {
if ((1 << digit) & set) != 0 {
if hashes[hashStackStride*i] == byte(0x80+length2.Hash) {
if _, err := writer.Write(hashes[hashStackStride*i : hashStackStride*i+hashStackStride]); err != nil {
return err
}
//fmt.Printf("%x: [%x]\n", digit, hashes[hashStackStride*i:hashStackStride*i+hashStackStride])
} else {
// Embedded node
size := int(hashes[hashStackStride*i]) - rlp.EmptyListCode
if _, err := writer.Write(hashes[hashStackStride*i : hashStackStride*i+size+1]); err != nil {
return err
}
//fmt.Printf("%x: embedded [%x]\n", digit, hashes[hashStackStride*i:hashStackStride*i+size+1])
}
i++
} else {
if _, err := writer.Write(hb.b[:]); err != nil {
return err
}
//fmt.Printf("%x: empty\n", digit)
}
}
hb.hashStack = hb.hashStack[:len(hb.hashStack)-hashStackStride*digits+hashStackStride]
hb.hashStack[len(hb.hashStack)-hashStackStride] = 0x80 + length2.Hash
if _, err := hb.sha.Read(hb.hashStack[len(hb.hashStack)-length2.Hash:]); err != nil {
return err
}
//fmt.Printf("} [%x]\n", hb.hashStack[len(hb.hashStack)-hashStackStride:])
if hashStackStride*len(hb.nodeStack) > len(hb.hashStack) {
hb.nodeStack = hb.nodeStack[:len(hb.nodeStack)-digits+1]
hb.nodeStack[len(hb.nodeStack)-1] = nil
if hb.trace {
fmt.Printf("Setting hb.nodeStack[%d] to nil\n", len(hb.nodeStack)-1)
}
}
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) hash(hash []byte) error {
if hb.trace {
fmt.Printf("HASH\n")
}
hb.hashStack = append(hb.hashStack, 0x80+length2.Hash)
hb.hashStack = append(hb.hashStack, hash...)
hb.nodeStack = append(hb.nodeStack, nil)
if hb.trace {
fmt.Printf("Stack depth: %d\n", len(hb.nodeStack))
}
return nil
}
func (hb *HashBuilder) code(code []byte) error {
if hb.trace {
fmt.Printf("CODE\n")
}
codeCopy := common.CopyBytes(code)
n := codeNode(codeCopy)
hb.nodeStack = append(hb.nodeStack, n)
hb.sha.Reset()
if _, err := hb.sha.Write(codeCopy); err != nil {
return err
}
var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value)
hash[0] = 0x80 + length2.Hash
if _, err := hb.sha.Read(hash[1:]); err != nil {
return err
}
hb.hashStack = append(hb.hashStack, hash[:]...)
return nil
}
func (hb *HashBuilder) emptyRoot() {
if hb.trace {
fmt.Printf("EMPTYROOT\n")
}
hb.nodeStack = append(hb.nodeStack, nil)
var hash [hashStackStride]byte // RLP representation of hash (or un-hashes value)
hash[0] = 0x80 + length2.Hash
copy(hash[1:], EmptyRoot[:])
hb.hashStack = append(hb.hashStack, hash[:]...)
}
func (hb *HashBuilder) RootHash() (libcommon.Hash, error) {
if !hb.hasRoot() {
return libcommon.Hash{}, fmt.Errorf("no root in the tree")
}
return hb.rootHash(), nil
}
func (hb *HashBuilder) rootHash() libcommon.Hash {
var hash libcommon.Hash
top := hb.topHash()
if len(top) == 33 {
copy(hash[:], top[1:])
} else {
hb.sha.Reset()
if _, err := hb.sha.Write(top); err != nil {
panic(err)
}
if _, err := hb.sha.Read(hash[:]); err != nil {
panic(err)
}
}
return hash
}
func (hb *HashBuilder) topHash() []byte {
pos := len(hb.hashStack) - hashStackStride
len := hb.hashStack[pos] - 0x80
if len > 32 {
// node itself (RLP list), not its hash
len = hb.hashStack[pos] - 0xc0
}
return hb.hashStack[pos : pos+1+int(len)]
}
func (hb *HashBuilder) printTopHashes(prefix []byte, _, children uint16) {
digits := bits.OnesCount16(children)
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
var i int
for digit := uint(0); digit < 16; digit++ {
if ((1 << digit) & children) != 0 {
fmt.Printf("topHash: %x%02x, %x\n", prefix, digit, hashes[hashStackStride*i+1:hashStackStride*(i+1)])
i++
}
}
}
func (hb *HashBuilder) topHashes(prefix []byte, hasHash, hasState uint16) []byte {
digits := bits.OnesCount16(hasState)
hashes := hb.hashStack[len(hb.hashStack)-hashStackStride*digits:]
hb.topHashesCopy = hb.topHashesCopy[:0]
for i := 0; hasHash > 0; hasState, hasHash = hasState>>1, hasHash>>1 {
if 1&hasState == 0 {
continue
}
if 1&hasHash != 0 {
hb.topHashesCopy = append(hb.topHashesCopy, hashes[hashStackStride*i+1:hashStackStride*(i+1)]...)
}
i++
}
return hb.topHashesCopy
}
func (hb *HashBuilder) root() node {
if hb.trace && len(hb.nodeStack) > 0 {
fmt.Printf("len(hb.nodeStack)=%d\n", len(hb.nodeStack))
}
return hb.nodeStack[len(hb.nodeStack)-1]
}
func (hb *HashBuilder) hasRoot() bool {
return len(hb.nodeStack) > 0
}