erigon-pulse/internal/ethapi/api.go

988 lines
34 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethapi
import (
"errors"
"fmt"
"math/big"
"github.com/holiman/uint256"
"github.com/ledgerwatch/erigon/accounts/abi"
"github.com/ledgerwatch/erigon/common"
"github.com/ledgerwatch/erigon/common/hexutil"
"github.com/ledgerwatch/erigon/common/math"
"github.com/ledgerwatch/erigon/core"
"github.com/ledgerwatch/erigon/core/types"
"github.com/ledgerwatch/erigon/core/vm"
"github.com/ledgerwatch/log/v3"
)
// CallArgs represents the arguments for a call.
type CallArgs struct {
From *common.Address `json:"from"`
To *common.Address `json:"to"`
Gas *hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
MaxPriorityFeePerGas *hexutil.Big `json:"maxPriorityFeePerGas"`
MaxFeePerGas *hexutil.Big `json:"maxFeePerGas"`
Value *hexutil.Big `json:"value"`
Nonce *hexutil.Uint64 `json:"nonce"`
Data *hexutil.Bytes `json:"data"`
AccessList *types.AccessList `json:"accessList"`
ChainID *hexutil.Big `json:"chainId,omitempty"`
}
// from retrieves the transaction sender address.
func (arg *CallArgs) from() common.Address {
if arg.From == nil {
return common.Address{}
}
return *arg.From
}
// ToMessage converts CallArgs to the Message type used by the core evm
func (args *CallArgs) ToMessage(globalGasCap uint64, baseFee *uint256.Int) (types.Message, error) {
// Reject invalid combinations of pre- and post-1559 fee styles
if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) {
return types.Message{}, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified")
}
// Set sender address or use zero address if none specified.
addr := args.from()
// Set default gas & gas price if none were set
gas := globalGasCap
if gas == 0 {
gas = uint64(math.MaxUint64 / 2)
}
if args.Gas != nil {
gas = uint64(*args.Gas)
}
if globalGasCap != 0 && globalGasCap < gas {
log.Warn("Caller gas above allowance, capping", "requested", gas, "cap", globalGasCap)
gas = globalGasCap
}
var (
gasPrice *uint256.Int
gasFeeCap *uint256.Int
gasTipCap *uint256.Int
)
if baseFee == nil {
// If there's no basefee, then it must be a non-1559 execution
gasPrice = new(uint256.Int)
if args.GasPrice != nil {
overflow := gasPrice.SetFromBig(args.GasPrice.ToInt())
if overflow {
return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1")
}
}
gasFeeCap, gasTipCap = gasPrice, gasPrice
} else {
// A basefee is provided, necessitating 1559-type execution
if args.GasPrice != nil {
// User specified the legacy gas field, convert to 1559 gas typing
gasPrice = new(uint256.Int)
overflow := gasPrice.SetFromBig(args.GasPrice.ToInt())
if overflow {
return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1")
}
gasFeeCap, gasTipCap = gasPrice, gasPrice
} else {
// User specified 1559 gas feilds (or none), use those
gasFeeCap = new(uint256.Int)
if args.MaxFeePerGas != nil {
overflow := gasFeeCap.SetFromBig(args.MaxFeePerGas.ToInt())
if overflow {
return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1")
}
}
gasTipCap = new(uint256.Int)
if args.MaxPriorityFeePerGas != nil {
overflow := gasTipCap.SetFromBig(args.MaxPriorityFeePerGas.ToInt())
if overflow {
return types.Message{}, fmt.Errorf("args.GasPrice higher than 2^256-1")
}
}
// Backfill the legacy gasPrice for EVM execution, unless we're all zeroes
gasPrice = new(uint256.Int)
if !gasFeeCap.IsZero() || !gasTipCap.IsZero() {
gasPrice = math.U256Min(new(uint256.Int).Add(gasTipCap, baseFee), gasFeeCap)
}
}
}
value := new(uint256.Int)
if args.Value != nil {
overflow := value.SetFromBig(args.Value.ToInt())
if overflow {
return types.Message{}, fmt.Errorf("args.Value higher than 2^256-1")
}
}
var data []byte
if args.Data != nil {
data = *args.Data
}
var accessList types.AccessList
if args.AccessList != nil {
accessList = *args.AccessList
}
msg := types.NewMessage(addr, args.To, 0, value, gas, gasPrice, gasFeeCap, gasTipCap, data, accessList, false)
return msg, nil
}
// account indicates the overriding fields of account during the execution of
// a message call.
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
type Account struct {
Nonce *hexutil.Uint64 `json:"nonce"`
Code *hexutil.Bytes `json:"code"`
Balance **hexutil.Big `json:"balance"`
State *map[common.Hash]uint256.Int `json:"state"`
StateDiff *map[common.Hash]uint256.Int `json:"stateDiff"`
}
func NewRevertError(result *core.ExecutionResult) *RevertError {
reason, errUnpack := abi.UnpackRevert(result.Revert())
err := errors.New("execution reverted")
if errUnpack == nil {
err = fmt.Errorf("execution reverted: %v", reason)
}
return &RevertError{
error: err,
reason: hexutil.Encode(result.Revert()),
}
}
// RevertError is an API error that encompassas an EVM revertal with JSON error
// code and a binary data blob.
type RevertError struct {
error
reason string // revert reason hex encoded
}
// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *RevertError) ErrorCode() int {
return 3
}
// ErrorData returns the hex encoded revert reason.
func (e *RevertError) ErrorData() interface{} {
return e.reason
}
// ExecutionResult groups all structured logs emitted by the EVM
// while replaying a transaction in debug mode as well as transaction
// execution status, the amount of gas used and the return value
type ExecutionResult struct {
Gas uint64 `json:"gas"`
Failed bool `json:"failed"`
ReturnValue string `json:"returnValue"`
StructLogs []StructLogRes `json:"structLogs"`
}
// StructLogRes stores a structured log emitted by the EVM while replaying a
// transaction in debug mode
type StructLogRes struct {
Pc uint64 `json:"pc"`
Op string `json:"op"`
Gas uint64 `json:"gas"`
GasCost uint64 `json:"gasCost"`
Depth int `json:"depth"`
Error error `json:"error,omitempty"`
Stack *[]string `json:"stack,omitempty"`
Memory *[]string `json:"memory,omitempty"`
Storage *map[string]string `json:"storage,omitempty"`
}
// FormatLogs formats EVM returned structured logs for json output
func FormatLogs(logs []vm.StructLog) []StructLogRes {
formatted := make([]StructLogRes, len(logs))
for index, trace := range logs {
formatted[index] = StructLogRes{
Pc: trace.Pc,
Op: trace.Op.String(),
Gas: trace.Gas,
GasCost: trace.GasCost,
Depth: trace.Depth,
Error: trace.Err,
}
if trace.Stack != nil {
stack := make([]string, len(trace.Stack))
for i, stackValue := range trace.Stack {
stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
}
formatted[index].Stack = &stack
}
if trace.Memory != nil {
memory := make([]string, 0, (len(trace.Memory)+31)/32)
for i := 0; i+32 <= len(trace.Memory); i += 32 {
memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
}
formatted[index].Memory = &memory
}
if trace.Storage != nil {
storage := make(map[string]string)
for i, storageValue := range trace.Storage {
storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
}
formatted[index].Storage = &storage
}
}
return formatted
}
// RPCMarshalHeader converts the given header to the RPC output .
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
result := map[string]interface{}{
"number": (*hexutil.Big)(head.Number),
"hash": head.Hash(),
"parentHash": head.ParentHash,
"nonce": head.Nonce,
"mixHash": head.MixDigest,
"sha3Uncles": head.UncleHash,
"logsBloom": head.Bloom,
"stateRoot": head.Root,
"miner": head.Coinbase,
"difficulty": (*hexutil.Big)(head.Difficulty),
"extraData": hexutil.Bytes(head.Extra),
"size": hexutil.Uint64(head.Size()),
"gasLimit": hexutil.Uint64(head.GasLimit),
"gasUsed": hexutil.Uint64(head.GasUsed),
"timestamp": hexutil.Uint64(head.Time),
"transactionsRoot": head.TxHash,
"receiptsRoot": head.ReceiptHash,
}
if head.BaseFee != nil {
result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
}
return result
}
// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
fields := RPCMarshalHeader(block.Header())
fields["size"] = hexutil.Uint64(block.Size())
if inclTx {
formatTx := func(tx types.Transaction) (interface{}, error) {
return tx.Hash(), nil
}
if fullTx {
formatTx = func(tx types.Transaction) (interface{}, error) {
return newRPCTransactionFromBlockHash(block, tx.Hash()), nil
}
}
txs := block.Transactions()
transactions := make([]interface{}, len(txs))
var err error
for i, tx := range txs {
if transactions[i], err = formatTx(tx); err != nil {
return nil, err
}
}
fields["transactions"] = transactions
}
uncles := block.Uncles()
uncleHashes := make([]common.Hash, len(uncles))
for i, uncle := range uncles {
uncleHashes[i] = uncle.Hash()
}
fields["uncles"] = uncleHashes
return fields, nil
}
/*
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
// a `PublicBlockchainAPI`.
func (s *PublicBlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
fields := RPCMarshalHeader(header)
fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash()))
return fields
}
// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
// a `PublicBlockchainAPI`.
func (s *PublicBlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
fields, err := RPCMarshalBlock(b, inclTx, fullTx)
if err != nil {
return nil, err
}
if inclTx {
fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash()))
}
return fields, err
}
*/
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
BlockHash *common.Hash `json:"blockHash"`
BlockNumber *hexutil.Big `json:"blockNumber"`
From common.Address `json:"from"`
Gas hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice,omitempty"`
Tip *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"`
FeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"`
Hash common.Hash `json:"hash"`
Input hexutil.Bytes `json:"input"`
Nonce hexutil.Uint64 `json:"nonce"`
To *common.Address `json:"to"`
TransactionIndex *hexutil.Uint64 `json:"transactionIndex"`
Value *hexutil.Big `json:"value"`
Type hexutil.Uint64 `json:"type"`
Accesses *types.AccessList `json:"accessList,omitempty"`
ChainID *hexutil.Big `json:"chainId,omitempty"`
V *hexutil.Big `json:"v"`
R *hexutil.Big `json:"r"`
S *hexutil.Big `json:"s"`
}
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
func newRPCTransaction(tx types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64, baseFee *big.Int) *RPCTransaction {
// Determine the signer. For replay-protected transactions, use the most permissive
// signer, because we assume that signers are backwards-compatible with old
// transactions. For non-protected transactions, the homestead signer signer is used
// because the return value of ChainId is zero for those transactions.
chainId := uint256.NewInt(0)
result := &RPCTransaction{
Type: hexutil.Uint64(tx.Type()),
Gas: hexutil.Uint64(tx.GetGas()),
Hash: tx.Hash(),
Input: hexutil.Bytes(tx.GetData()),
Nonce: hexutil.Uint64(tx.GetNonce()),
To: tx.GetTo(),
Value: (*hexutil.Big)(tx.GetValue().ToBig()),
}
switch t := tx.(type) {
case *types.LegacyTx:
chainId = types.DeriveChainId(&t.V)
result.ChainID = (*hexutil.Big)(chainId.ToBig())
result.GasPrice = (*hexutil.Big)(t.GasPrice.ToBig())
result.V = (*hexutil.Big)(t.V.ToBig())
result.R = (*hexutil.Big)(t.R.ToBig())
result.S = (*hexutil.Big)(t.S.ToBig())
case *types.AccessListTx:
chainId.Set(t.ChainID)
result.ChainID = (*hexutil.Big)(chainId.ToBig())
result.GasPrice = (*hexutil.Big)(t.GasPrice.ToBig())
result.V = (*hexutil.Big)(t.V.ToBig())
result.R = (*hexutil.Big)(t.R.ToBig())
result.S = (*hexutil.Big)(t.S.ToBig())
if len(t.AccessList) > 0 {
result.Accesses = &t.AccessList
}
case *types.DynamicFeeTransaction:
chainId.Set(t.ChainID)
result.ChainID = (*hexutil.Big)(chainId.ToBig())
result.Tip = (*hexutil.Big)(t.Tip.ToBig())
result.FeeCap = (*hexutil.Big)(t.FeeCap.ToBig())
result.V = (*hexutil.Big)(t.V.ToBig())
result.R = (*hexutil.Big)(t.R.ToBig())
result.S = (*hexutil.Big)(t.S.ToBig())
if len(t.AccessList) > 0 {
result.Accesses = &t.AccessList
}
// if the transaction has been mined, compute the effective gas price
if baseFee != nil && blockHash != (common.Hash{}) {
// price = min(tip, gasFeeCap - baseFee) + baseFee
price := math.BigMin(new(big.Int).Add(t.Tip.ToBig(), baseFee), t.FeeCap.ToBig())
result.GasPrice = (*hexutil.Big)(price)
} else {
result.GasPrice = nil
}
}
signer := types.LatestSignerForChainID(chainId.ToBig())
var err error
result.From, err = tx.Sender(*signer)
if err != nil {
log.Warn("sender recovery", "err", err)
}
if blockHash != (common.Hash{}) {
result.BlockHash = &blockHash
result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
result.TransactionIndex = (*hexutil.Uint64)(&index)
}
return result
}
/*
// newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func newRPCPendingTransaction(tx types.Transaction) *RPCTransaction {
return newRPCTransaction(tx, common.Hash{}, 0, 0)
}
*/
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64) *RPCTransaction {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index, b.BaseFee())
}
/*
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
var blob bytes.Buffer
if txs[index].Type() != types.LegacyTxType {
if err := blob.WriteByte(txs[index].Type()); err != nil {
panic(err)
}
}
if err := rlp.Encode(&blob, txs[index]); err != nil {
panic(err)
}
return blob.Bytes()
}
*/
// newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash) *RPCTransaction {
for idx, tx := range b.Transactions() {
if tx.Hash() == hash {
return newRPCTransactionFromBlockIndex(b, uint64(idx))
}
}
return nil
}
/*
// PublicTransactionPoolAPI exposes methods for the RPC interface
type PublicTransactionPoolAPI struct {
b Backend
nonceLock *AddrLocker
signer *types.Signer
}
// NewPublicTransactionPoolAPI creates a new RPC service with methods specific for the transaction pool.
func NewPublicTransactionPoolAPI(b Backend, nonceLock *AddrLocker) *PublicTransactionPoolAPI {
// The signer used by the API should always be the 'latest' known one because we expect
// signers to be backwards-compatible with old transactions.
signer := types.LatestSigner(b.ChainConfig())
return &PublicTransactionPoolAPI{b, nonceLock, signer}
}
// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
func (s *PublicTransactionPoolAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
// Ask transaction pool for the nonce which includes pending transactions
if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
nonce, err := s.b.GetPoolNonce(ctx, address)
if err != nil {
return nil, err
}
return (*hexutil.Uint64)(&nonce), nil
}
// Resolve block number and use its state to ask for the nonce
state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
if state == nil || err != nil {
return nil, err
}
nonce := state.GetNonce(address)
return (*hexutil.Uint64)(&nonce), state.Error()
}
// GetTransactionByHash returns the transaction for the given hash
func (s *PublicTransactionPoolAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
// Try to return an already finalized transaction
tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
if err != nil {
return nil, err
}
if tx != nil {
return newRPCTransaction(tx, blockHash, blockNumber, index), nil
}
// No finalized transaction, try to retrieve it from the pool
if tx := s.b.GetPoolTransaction(hash); tx != nil {
return newRPCPendingTransaction(tx), nil
}
// Transaction unknown, return as such
return nil, nil
}
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
func (s *PublicTransactionPoolAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
// Retrieve a finalized transaction, or a pooled otherwise
tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
if err != nil {
return nil, err
}
if tx == nil {
if tx = s.b.GetPoolTransaction(hash); tx == nil {
// Transaction not found anywhere, abort
return nil, nil
}
}
// Serialize to RLP and return
var blob bytes.Buffer
if tx.Type() != types.LegacyTxType {
if err := blob.WriteByte(tx.Type()); err != nil {
return nil, err
}
}
if err := rlp.Encode(&blob, tx); err != nil {
return nil, err
}
return blob.Bytes(), nil
}
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
func (s *PublicTransactionPoolAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
if err != nil {
return nil, nil
}
receipts, err := s.b.GetReceipts(ctx, blockHash)
if err != nil {
return nil, err
}
if len(receipts) <= int(index) {
return nil, nil
}
receipt := receipts[index]
// Derive the sender.
signer := types.MakeSigner(s.b.ChainConfig(), blockNumber)
from, _ := tx.Sender(*signer)
fields := map[string]interface{}{
"blockHash": blockHash,
"blockNumber": hexutil.Uint64(blockNumber),
"transactionHash": hash,
"transactionIndex": hexutil.Uint64(index),
"from": from,
"to": tx.GetTo(),
"gasUsed": hexutil.Uint64(receipt.GasUsed),
"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
"contractAddress": nil,
"logs": receipt.Logs,
"logsBloom": receipt.Bloom,
"type": hexutil.Uint(tx.Type()),
}
// Assign receipt status or post state.
if len(receipt.PostState) > 0 {
fields["root"] = hexutil.Bytes(receipt.PostState)
} else {
fields["status"] = hexutil.Uint(receipt.Status)
}
if receipt.Logs == nil {
fields["logs"] = [][]*types.Log{}
}
// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
if receipt.ContractAddress != (common.Address{}) {
fields["contractAddress"] = receipt.ContractAddress
}
return fields, nil
}
// SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool.
type SendTxArgs struct {
From common.Address `json:"from"`
To *common.Address `json:"to"`
Gas *hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
MaxPriorityFeePerGas *hexutil.Big `json:"tip"`
MaxFeePerGas *hexutil.Big `json:"feeCap"`
Value *hexutil.Big `json:"value"`
Nonce *hexutil.Uint64 `json:"nonce"`
// We accept "data" and "input" for backwards-compatibility reasons. "input" is the
// newer name and should be preferred by clients.
Data *hexutil.Bytes `json:"data"`
Input *hexutil.Bytes `json:"input"`
// For non-legacy transactions
AccessList *types.AccessList `json:"accessList,omitempty"`
ChainID *hexutil.Big `json:"chainId,omitempty"`
}
// setDefaults fills in default values for unspecified tx fields.
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
if args.GasPrice == nil {
price, err := b.SuggestPrice(ctx)
if err != nil {
return err
}
args.GasPrice = (*hexutil.Big)(price)
}
if args.Value == nil {
args.Value = new(hexutil.Big)
}
if args.Nonce == nil {
nonce, err := b.GetPoolNonce(ctx, args.From)
if err != nil {
return err
}
args.Nonce = (*hexutil.Uint64)(&nonce)
}
if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
return errors.New(`both "data" and "input" are set and not equal. Please use "input" to pass transaction call data`)
}
if args.To == nil {
// Contract creation
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if len(input) == 0 {
return errors.New(`contract creation without any data provided`)
}
}
// Estimate the gas usage if necessary.
if args.Gas == nil {
// For backwards-compatibility reason, we try both input and data
// but input is preferred.
input := args.Input
if input == nil {
input = args.Data
}
callArgs := CallArgs{
From: &args.From, // From shouldn't be nil
To: args.To,
GasPrice: args.GasPrice,
Value: args.Value,
Data: input,
AccessList: args.AccessList,
}
pendingBlockNr := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
estimated, err := DoEstimateGas(ctx, b, callArgs, pendingBlockNr, b.RPCGasCap())
if err != nil {
return err
}
args.Gas = &estimated
log.Trace("Estimate gas usage automatically", "gas", args.Gas)
}
if args.ChainID == nil {
id := (*hexutil.Big)(b.ChainConfig().ChainID)
args.ChainID = id
}
return nil
}
// toTransaction converts the arguments to a transaction.
// This assumes that setDefaults has been called.
func (args *SendTxArgs) toTransaction() types.Transaction {
var input []byte
if args.Input != nil {
input = *args.Input
} else if args.Data != nil {
input = *args.Data
}
var tx types.Transaction
gasPrice, _ := uint256.FromBig((*big.Int)(args.GasPrice))
value, _ := uint256.FromBig((*big.Int)(args.Value))
if args.AccessList == nil {
tx = &types.LegacyTx{
CommonTx: types.CommonTx{
To: args.To,
Nonce: uint64(*args.Nonce),
Gas: uint64(*args.Gas),
Value: value,
Data: input,
},
GasPrice: gasPrice,
}
} else {
chainId, _ := uint256.FromBig((*big.Int)(args.ChainID))
if args.MaxFeePerGas == nil {
tx = &types.AccessListTx{
LegacyTx: types.LegacyTx{
CommonTx: types.CommonTx{
To: args.To,
Nonce: uint64(*args.Nonce),
Gas: uint64(*args.Gas),
Value: value,
Data: input,
},
GasPrice: gasPrice,
},
ChainID: chainId,
AccessList: *args.AccessList,
}
} else {
tip, _ := uint256.FromBig((*big.Int)(args.MaxPriorityFeePerGas))
feeCap, _ := uint256.FromBig((*big.Int)(args.MaxFeePerGas))
tx = &types.DynamicFeeTransaction{
CommonTx: types.CommonTx{
To: args.To,
Nonce: uint64(*args.Nonce),
Gas: uint64(*args.Gas),
Value: value,
Data: input,
},
MaxPriorityFeePerGas: tip,
MaxFeePerGas: feeCap,
ChainID: chainId,
AccessList: *args.AccessList,
}
}
}
return tx
}
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx types.Transaction) (common.Hash, error) {
// If the transaction fee cap is already specified, ensure the
// fee of the given transaction is _reasonable_.
if err := checkTxFee(tx.GetPrice().ToBig(), tx.GetGas(), b.RPCTxFeeCap()); err != nil {
return common.Hash{}, err
}
if !b.UnprotectedAllowed() && !tx.Protected() {
// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
}
if err := b.SendTx(ctx, tx); err != nil {
return common.Hash{}, err
}
// Print a log with full tx details for manual investigations and interventions
signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number().Uint64())
from, err := tx.Sender(*signer)
if err != nil {
return common.Hash{}, err
}
if tx.GetTo() == nil {
addr := crypto.CreateAddress(from, tx.GetNonce())
log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.GetNonce(), "contract", addr.Hex(), "value", tx.GetValue())
} else {
log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.GetNonce(), "recipient", tx.GetTo(), "value", tx.GetValue())
}
return tx.Hash(), nil
}
// FillTransaction fills the defaults (nonce, gas, gasPrice) on a given unsigned transaction,
// and returns it to the caller for further processing (signing + broadcast)
func (s *PublicTransactionPoolAPI) FillTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, s.b); err != nil {
return nil, err
}
// Assemble the transaction and obtain rlp
tx := args.toTransaction()
var blob bytes.Buffer
if tx.Type() != types.LegacyTxType {
if err := blob.WriteByte(tx.Type()); err != nil {
return nil, err
}
}
if err := rlp.Encode(&blob, tx); err != nil {
return nil, err
}
return &SignTransactionResult{blob.Bytes(), tx}, nil
}
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
func (s *PublicTransactionPoolAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
tx, err := types.DecodeTransaction(rlp.NewStream(bytes.NewReader(input), 0))
if err != nil {
return common.Hash{}, err
}
return SubmitTransaction(ctx, s.b, tx)
}
// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
Raw hexutil.Bytes `json:"raw"`
Tx types.Transaction `json:"tx"`
}
// PublicDebugAPI is the collection of Ethereum APIs exposed over the public
// debugging endpoint.
type PublicDebugAPI struct {
b Backend
}
// NewPublicDebugAPI creates a new API definition for the public debug methods
// of the Ethereum service.
func NewPublicDebugAPI(b Backend) *PublicDebugAPI {
return &PublicDebugAPI{b: b}
}
// GetBlockRlp retrieves the RLP encoded for of a single block.
func (api *PublicDebugAPI) GetBlockRlp(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
encoded, err := rlp.EncodeToBytes(block)
if err != nil {
return "", err
}
return fmt.Sprintf("%x", encoded), nil
}
// PrintBlock retrieves a block and returns its pretty printed form.
func (api *PublicDebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
return spew.Sdump(block), nil
}
// SeedHash retrieves the seed hash of a block.
func (api *PublicDebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
return fmt.Sprintf("0x%x", ethash.SeedHash(number)), nil
}
// PrivateDebugAPI is the collection of Ethereum APIs exposed over the private
// debugging endpoint.
type PrivateDebugAPI struct {
b Backend
}
// NewPrivateDebugAPI creates a new API definition for the private debug methods
// of the Ethereum service.
func NewPrivateDebugAPI(b Backend) *PrivateDebugAPI {
return &PrivateDebugAPI{b: b}
}
// ChaindbProperty returns properties of the chain database.
func (api *PrivateDebugAPI) ChaindbProperty(property string) (string, error) {
return "N/A", nil
}
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
func (api *PrivateDebugAPI) ChaindbCompact() error {
// Intentionally disabled in Erigon
return nil
}
// SetHead rewinds the head of the blockchain to a previous block.
func (api *PrivateDebugAPI) SetHead(number hexutil.Uint64) {
api.b.SetHead(uint64(number))
}
// PublicNetAPI offers network related RPC methods
type PublicNetAPI struct {
net *p2p.Server
networkVersion uint64
}
// NewPublicNetAPI creates a new net API instance.
func NewPublicNetAPI(net *p2p.Server, networkVersion uint64) *PublicNetAPI {
return &PublicNetAPI{net, networkVersion}
}
// Listening returns an indication if the node is listening for network connections.
func (s *PublicNetAPI) Listening() bool {
return true // always listening
}
// PeerCount returns the number of connected peers
func (s *PublicNetAPI) PeerCount() hexutil.Uint {
return hexutil.Uint(s.net.PeerCount())
}
// Version returns the current ethereum protocol version.
func (s *PublicNetAPI) Version() string {
return fmt.Sprintf("%d", s.networkVersion)
}
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
// Short circuit if there is no cap for transaction fee at all.
if cap == 0 {
return nil
}
feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
feeFloat, _ := feeEth.Float64()
if feeFloat > cap {
return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
}
return nil
}
*/