go-pulse/p2p/simulations/simulation.go
Felix Lange 30cd5c1854
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.

Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.

The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.

* p2p/discover: port to p2p/enode

This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:

  - Table.Lookup is not available anymore. It used to take a public key
    as argument because v4 protocol requires one. Its replacement is
    LookupRandom.
  - Table.Resolve takes *enode.Node instead of NodeID. This is also for
    v4 protocol compatibility because nodes cannot be looked up by ID
    alone.
  - Types Node and NodeID are gone. Further commits in the series will be
    fixes all over the the codebase to deal with those removals.

* p2p: port to p2p/enode and discovery changes

This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.

New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.

* p2p/simulations, p2p/testing: port to p2p/enode

No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:

 - testing.ProtocolSession tracks complete nodes, not just their IDs.
 - adapters.NodeConfig has a new method to create a complete node.

These changes were needed to make swarm tests work.

Note that the NodeID change makes the code incompatible with old
simulation snapshots.

* whisper/whisperv5, whisper/whisperv6: port to p2p/enode

This port was easy because whisper uses []byte for node IDs and
URL strings in the API.

* eth: port to p2p/enode

Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.

* les: port to p2p/enode

Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.

* node: port to p2p/enode

This change simply replaces discover.Node and discover.NodeID with their
new equivalents.

* swarm/network: port to p2p/enode

Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).

There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.

Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
2018-09-25 00:59:00 +02:00

158 lines
3.9 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package simulations
import (
"context"
"time"
"github.com/ethereum/go-ethereum/p2p/enode"
)
// Simulation provides a framework for running actions in a simulated network
// and then waiting for expectations to be met
type Simulation struct {
network *Network
}
// NewSimulation returns a new simulation which runs in the given network
func NewSimulation(network *Network) *Simulation {
return &Simulation{
network: network,
}
}
// Run performs a step of the simulation by performing the step's action and
// then waiting for the step's expectation to be met
func (s *Simulation) Run(ctx context.Context, step *Step) (result *StepResult) {
result = newStepResult()
result.StartedAt = time.Now()
defer func() { result.FinishedAt = time.Now() }()
// watch network events for the duration of the step
stop := s.watchNetwork(result)
defer stop()
// perform the action
if err := step.Action(ctx); err != nil {
result.Error = err
return
}
// wait for all node expectations to either pass, error or timeout
nodes := make(map[enode.ID]struct{}, len(step.Expect.Nodes))
for _, id := range step.Expect.Nodes {
nodes[id] = struct{}{}
}
for len(result.Passes) < len(nodes) {
select {
case id := <-step.Trigger:
// skip if we aren't checking the node
if _, ok := nodes[id]; !ok {
continue
}
// skip if the node has already passed
if _, ok := result.Passes[id]; ok {
continue
}
// run the node expectation check
pass, err := step.Expect.Check(ctx, id)
if err != nil {
result.Error = err
return
}
if pass {
result.Passes[id] = time.Now()
}
case <-ctx.Done():
result.Error = ctx.Err()
return
}
}
return
}
func (s *Simulation) watchNetwork(result *StepResult) func() {
stop := make(chan struct{})
done := make(chan struct{})
events := make(chan *Event)
sub := s.network.Events().Subscribe(events)
go func() {
defer close(done)
defer sub.Unsubscribe()
for {
select {
case event := <-events:
result.NetworkEvents = append(result.NetworkEvents, event)
case <-stop:
return
}
}
}()
return func() {
close(stop)
<-done
}
}
type Step struct {
// Action is the action to perform for this step
Action func(context.Context) error
// Trigger is a channel which receives node ids and triggers an
// expectation check for that node
Trigger chan enode.ID
// Expect is the expectation to wait for when performing this step
Expect *Expectation
}
type Expectation struct {
// Nodes is a list of nodes to check
Nodes []enode.ID
// Check checks whether a given node meets the expectation
Check func(context.Context, enode.ID) (bool, error)
}
func newStepResult() *StepResult {
return &StepResult{
Passes: make(map[enode.ID]time.Time),
}
}
type StepResult struct {
// Error is the error encountered whilst running the step
Error error
// StartedAt is the time the step started
StartedAt time.Time
// FinishedAt is the time the step finished
FinishedAt time.Time
// Passes are the timestamps of the successful node expectations
Passes map[enode.ID]time.Time
// NetworkEvents are the network events which occurred during the step
NetworkEvents []*Event
}