go-pulse/eth/downloader/peer.go
Péter Szilágyi 017831dd5b
core, eth: split eth package, implement snap protocol (#21482)
This commit splits the eth package, separating the handling of eth and snap protocols. It also includes the capability to run snap sync (https://github.com/ethereum/devp2p/blob/master/caps/snap.md) , but does not enable it by default. 

Co-authored-by: Marius van der Wijden <m.vanderwijden@live.de>
Co-authored-by: Martin Holst Swende <martin@swende.se>
2020-12-14 10:27:15 +01:00

580 lines
19 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains the active peer-set of the downloader, maintaining both failures
// as well as reputation metrics to prioritize the block retrievals.
package downloader
import (
"errors"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
)
const (
maxLackingHashes = 4096 // Maximum number of entries allowed on the list or lacking items
measurementImpact = 0.1 // The impact a single measurement has on a peer's final throughput value.
)
var (
errAlreadyFetching = errors.New("already fetching blocks from peer")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
// peerConnection represents an active peer from which hashes and blocks are retrieved.
type peerConnection struct {
id string // Unique identifier of the peer
headerIdle int32 // Current header activity state of the peer (idle = 0, active = 1)
blockIdle int32 // Current block activity state of the peer (idle = 0, active = 1)
receiptIdle int32 // Current receipt activity state of the peer (idle = 0, active = 1)
stateIdle int32 // Current node data activity state of the peer (idle = 0, active = 1)
headerThroughput float64 // Number of headers measured to be retrievable per second
blockThroughput float64 // Number of blocks (bodies) measured to be retrievable per second
receiptThroughput float64 // Number of receipts measured to be retrievable per second
stateThroughput float64 // Number of node data pieces measured to be retrievable per second
rtt time.Duration // Request round trip time to track responsiveness (QoS)
headerStarted time.Time // Time instance when the last header fetch was started
blockStarted time.Time // Time instance when the last block (body) fetch was started
receiptStarted time.Time // Time instance when the last receipt fetch was started
stateStarted time.Time // Time instance when the last node data fetch was started
lacking map[common.Hash]struct{} // Set of hashes not to request (didn't have previously)
peer Peer
version uint // Eth protocol version number to switch strategies
log log.Logger // Contextual logger to add extra infos to peer logs
lock sync.RWMutex
}
// LightPeer encapsulates the methods required to synchronise with a remote light peer.
type LightPeer interface {
Head() (common.Hash, *big.Int)
RequestHeadersByHash(common.Hash, int, int, bool) error
RequestHeadersByNumber(uint64, int, int, bool) error
}
// Peer encapsulates the methods required to synchronise with a remote full peer.
type Peer interface {
LightPeer
RequestBodies([]common.Hash) error
RequestReceipts([]common.Hash) error
RequestNodeData([]common.Hash) error
}
// lightPeerWrapper wraps a LightPeer struct, stubbing out the Peer-only methods.
type lightPeerWrapper struct {
peer LightPeer
}
func (w *lightPeerWrapper) Head() (common.Hash, *big.Int) { return w.peer.Head() }
func (w *lightPeerWrapper) RequestHeadersByHash(h common.Hash, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByHash(h, amount, skip, reverse)
}
func (w *lightPeerWrapper) RequestHeadersByNumber(i uint64, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByNumber(i, amount, skip, reverse)
}
func (w *lightPeerWrapper) RequestBodies([]common.Hash) error {
panic("RequestBodies not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestReceipts([]common.Hash) error {
panic("RequestReceipts not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestNodeData([]common.Hash) error {
panic("RequestNodeData not supported in light client mode sync")
}
// newPeerConnection creates a new downloader peer.
func newPeerConnection(id string, version uint, peer Peer, logger log.Logger) *peerConnection {
return &peerConnection{
id: id,
lacking: make(map[common.Hash]struct{}),
peer: peer,
version: version,
log: logger,
}
}
// Reset clears the internal state of a peer entity.
func (p *peerConnection) Reset() {
p.lock.Lock()
defer p.lock.Unlock()
atomic.StoreInt32(&p.headerIdle, 0)
atomic.StoreInt32(&p.blockIdle, 0)
atomic.StoreInt32(&p.receiptIdle, 0)
atomic.StoreInt32(&p.stateIdle, 0)
p.headerThroughput = 0
p.blockThroughput = 0
p.receiptThroughput = 0
p.stateThroughput = 0
p.lacking = make(map[common.Hash]struct{})
}
// FetchHeaders sends a header retrieval request to the remote peer.
func (p *peerConnection) FetchHeaders(from uint64, count int) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.headerIdle, 0, 1) {
return errAlreadyFetching
}
p.headerStarted = time.Now()
// Issue the header retrieval request (absolute upwards without gaps)
go p.peer.RequestHeadersByNumber(from, count, 0, false)
return nil
}
// FetchBodies sends a block body retrieval request to the remote peer.
func (p *peerConnection) FetchBodies(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) {
return errAlreadyFetching
}
p.blockStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestBodies(hashes)
}()
return nil
}
// FetchReceipts sends a receipt retrieval request to the remote peer.
func (p *peerConnection) FetchReceipts(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.receiptIdle, 0, 1) {
return errAlreadyFetching
}
p.receiptStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestReceipts(hashes)
}()
return nil
}
// FetchNodeData sends a node state data retrieval request to the remote peer.
func (p *peerConnection) FetchNodeData(hashes []common.Hash) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.stateIdle, 0, 1) {
return errAlreadyFetching
}
p.stateStarted = time.Now()
go p.peer.RequestNodeData(hashes)
return nil
}
// SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval
// requests. Its estimated header retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetHeadersIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.headerStarted), delivered, &p.headerThroughput, &p.headerIdle)
}
// SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval
// requests. Its estimated body retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetBodiesIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.blockStarted), delivered, &p.blockThroughput, &p.blockIdle)
}
// SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt
// retrieval requests. Its estimated receipt retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetReceiptsIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.receiptStarted), delivered, &p.receiptThroughput, &p.receiptIdle)
}
// SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie
// data retrieval requests. Its estimated state retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetNodeDataIdle(delivered int, deliveryTime time.Time) {
p.setIdle(deliveryTime.Sub(p.stateStarted), delivered, &p.stateThroughput, &p.stateIdle)
}
// setIdle sets the peer to idle, allowing it to execute new retrieval requests.
// Its estimated retrieval throughput is updated with that measured just now.
func (p *peerConnection) setIdle(elapsed time.Duration, delivered int, throughput *float64, idle *int32) {
// Irrelevant of the scaling, make sure the peer ends up idle
defer atomic.StoreInt32(idle, 0)
p.lock.Lock()
defer p.lock.Unlock()
// If nothing was delivered (hard timeout / unavailable data), reduce throughput to minimum
if delivered == 0 {
*throughput = 0
return
}
// Otherwise update the throughput with a new measurement
if elapsed <= 0 {
elapsed = 1 // +1 (ns) to ensure non-zero divisor
}
measured := float64(delivered) / (float64(elapsed) / float64(time.Second))
*throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured
p.rtt = time.Duration((1-measurementImpact)*float64(p.rtt) + measurementImpact*float64(elapsed))
p.log.Trace("Peer throughput measurements updated",
"hps", p.headerThroughput, "bps", p.blockThroughput,
"rps", p.receiptThroughput, "sps", p.stateThroughput,
"miss", len(p.lacking), "rtt", p.rtt)
}
// HeaderCapacity retrieves the peers header download allowance based on its
// previously discovered throughput.
func (p *peerConnection) HeaderCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.headerThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxHeaderFetch)))
}
// BlockCapacity retrieves the peers block download allowance based on its
// previously discovered throughput.
func (p *peerConnection) BlockCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.blockThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxBlockFetch)))
}
// ReceiptCapacity retrieves the peers receipt download allowance based on its
// previously discovered throughput.
func (p *peerConnection) ReceiptCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.receiptThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxReceiptFetch)))
}
// NodeDataCapacity retrieves the peers state download allowance based on its
// previously discovered throughput.
func (p *peerConnection) NodeDataCapacity(targetRTT time.Duration) int {
p.lock.RLock()
defer p.lock.RUnlock()
return int(math.Min(1+math.Max(1, p.stateThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxStateFetch)))
}
// MarkLacking appends a new entity to the set of items (blocks, receipts, states)
// that a peer is known not to have (i.e. have been requested before). If the
// set reaches its maximum allowed capacity, items are randomly dropped off.
func (p *peerConnection) MarkLacking(hash common.Hash) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.lacking) >= maxLackingHashes {
for drop := range p.lacking {
delete(p.lacking, drop)
break
}
}
p.lacking[hash] = struct{}{}
}
// Lacks retrieves whether the hash of a blockchain item is on the peers lacking
// list (i.e. whether we know that the peer does not have it).
func (p *peerConnection) Lacks(hash common.Hash) bool {
p.lock.RLock()
defer p.lock.RUnlock()
_, ok := p.lacking[hash]
return ok
}
// peerSet represents the collection of active peer participating in the chain
// download procedure.
type peerSet struct {
peers map[string]*peerConnection
newPeerFeed event.Feed
peerDropFeed event.Feed
lock sync.RWMutex
}
// newPeerSet creates a new peer set top track the active download sources.
func newPeerSet() *peerSet {
return &peerSet{
peers: make(map[string]*peerConnection),
}
}
// SubscribeNewPeers subscribes to peer arrival events.
func (ps *peerSet) SubscribeNewPeers(ch chan<- *peerConnection) event.Subscription {
return ps.newPeerFeed.Subscribe(ch)
}
// SubscribePeerDrops subscribes to peer departure events.
func (ps *peerSet) SubscribePeerDrops(ch chan<- *peerConnection) event.Subscription {
return ps.peerDropFeed.Subscribe(ch)
}
// Reset iterates over the current peer set, and resets each of the known peers
// to prepare for a next batch of block retrieval.
func (ps *peerSet) Reset() {
ps.lock.RLock()
defer ps.lock.RUnlock()
for _, peer := range ps.peers {
peer.Reset()
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known.
//
// The method also sets the starting throughput values of the new peer to the
// average of all existing peers, to give it a realistic chance of being used
// for data retrievals.
func (ps *peerSet) Register(p *peerConnection) error {
// Retrieve the current median RTT as a sane default
p.rtt = ps.medianRTT()
// Register the new peer with some meaningful defaults
ps.lock.Lock()
if _, ok := ps.peers[p.id]; ok {
ps.lock.Unlock()
return errAlreadyRegistered
}
if len(ps.peers) > 0 {
p.headerThroughput, p.blockThroughput, p.receiptThroughput, p.stateThroughput = 0, 0, 0, 0
for _, peer := range ps.peers {
peer.lock.RLock()
p.headerThroughput += peer.headerThroughput
p.blockThroughput += peer.blockThroughput
p.receiptThroughput += peer.receiptThroughput
p.stateThroughput += peer.stateThroughput
peer.lock.RUnlock()
}
p.headerThroughput /= float64(len(ps.peers))
p.blockThroughput /= float64(len(ps.peers))
p.receiptThroughput /= float64(len(ps.peers))
p.stateThroughput /= float64(len(ps.peers))
}
ps.peers[p.id] = p
ps.lock.Unlock()
ps.newPeerFeed.Send(p)
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *peerSet) Unregister(id string) error {
ps.lock.Lock()
p, ok := ps.peers[id]
if !ok {
ps.lock.Unlock()
return errNotRegistered
}
delete(ps.peers, id)
ps.lock.Unlock()
ps.peerDropFeed.Send(p)
return nil
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peerConnection {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// AllPeers retrieves a flat list of all the peers within the set.
func (ps *peerSet) AllPeers() []*peerConnection {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peerConnection, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// HeaderIdlePeers retrieves a flat list of all the currently header-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) HeaderIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.headerIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.headerThroughput
}
return ps.idlePeers(64, 65, idle, throughput)
}
// BodyIdlePeers retrieves a flat list of all the currently body-idle peers within
// the active peer set, ordered by their reputation.
func (ps *peerSet) BodyIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.blockIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.blockThroughput
}
return ps.idlePeers(64, 65, idle, throughput)
}
// ReceiptIdlePeers retrieves a flat list of all the currently receipt-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) ReceiptIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.receiptIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.receiptThroughput
}
return ps.idlePeers(64, 65, idle, throughput)
}
// NodeDataIdlePeers retrieves a flat list of all the currently node-data-idle
// peers within the active peer set, ordered by their reputation.
func (ps *peerSet) NodeDataIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.stateIdle) == 0
}
throughput := func(p *peerConnection) float64 {
p.lock.RLock()
defer p.lock.RUnlock()
return p.stateThroughput
}
return ps.idlePeers(64, 65, idle, throughput)
}
// idlePeers retrieves a flat list of all currently idle peers satisfying the
// protocol version constraints, using the provided function to check idleness.
// The resulting set of peers are sorted by their measure throughput.
func (ps *peerSet) idlePeers(minProtocol, maxProtocol uint, idleCheck func(*peerConnection) bool, throughput func(*peerConnection) float64) ([]*peerConnection, int) {
ps.lock.RLock()
defer ps.lock.RUnlock()
idle, total := make([]*peerConnection, 0, len(ps.peers)), 0
tps := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers {
if p.version >= minProtocol && p.version <= maxProtocol {
if idleCheck(p) {
idle = append(idle, p)
tps = append(tps, throughput(p))
}
total++
}
}
// And sort them
sortPeers := &peerThroughputSort{idle, tps}
sort.Sort(sortPeers)
return sortPeers.p, total
}
// medianRTT returns the median RTT of the peerset, considering only the tuning
// peers if there are more peers available.
func (ps *peerSet) medianRTT() time.Duration {
// Gather all the currently measured round trip times
ps.lock.RLock()
defer ps.lock.RUnlock()
rtts := make([]float64, 0, len(ps.peers))
for _, p := range ps.peers {
p.lock.RLock()
rtts = append(rtts, float64(p.rtt))
p.lock.RUnlock()
}
sort.Float64s(rtts)
median := rttMaxEstimate
if qosTuningPeers <= len(rtts) {
median = time.Duration(rtts[qosTuningPeers/2]) // Median of our tuning peers
} else if len(rtts) > 0 {
median = time.Duration(rtts[len(rtts)/2]) // Median of our connected peers (maintain even like this some baseline qos)
}
// Restrict the RTT into some QoS defaults, irrelevant of true RTT
if median < rttMinEstimate {
median = rttMinEstimate
}
if median > rttMaxEstimate {
median = rttMaxEstimate
}
return median
}
// peerThroughputSort implements the Sort interface, and allows for
// sorting a set of peers by their throughput
// The sorted data is with the _highest_ throughput first
type peerThroughputSort struct {
p []*peerConnection
tp []float64
}
func (ps *peerThroughputSort) Len() int {
return len(ps.p)
}
func (ps *peerThroughputSort) Less(i, j int) bool {
return ps.tp[i] > ps.tp[j]
}
func (ps *peerThroughputSort) Swap(i, j int) {
ps.p[i], ps.p[j] = ps.p[j], ps.p[i]
ps.tp[i], ps.tp[j] = ps.tp[j], ps.tp[i]
}