mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2025-01-18 08:08:47 +00:00
2563 lines
93 KiB
Go
2563 lines
93 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package core
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
"math/rand"
|
|
"os"
|
|
"sync/atomic"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/state"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/event"
|
|
"github.com/ethereum/go-ethereum/params"
|
|
"github.com/ethereum/go-ethereum/trie"
|
|
)
|
|
|
|
var (
|
|
// testTxPoolConfig is a transaction pool configuration without stateful disk
|
|
// sideeffects used during testing.
|
|
testTxPoolConfig TxPoolConfig
|
|
|
|
// eip1559Config is a chain config with EIP-1559 enabled at block 0.
|
|
eip1559Config *params.ChainConfig
|
|
)
|
|
|
|
func init() {
|
|
testTxPoolConfig = DefaultTxPoolConfig
|
|
testTxPoolConfig.Journal = ""
|
|
|
|
cpy := *params.TestChainConfig
|
|
eip1559Config = &cpy
|
|
eip1559Config.BerlinBlock = common.Big0
|
|
eip1559Config.LondonBlock = common.Big0
|
|
}
|
|
|
|
type testBlockChain struct {
|
|
gasLimit uint64 // must be first field for 64 bit alignment (atomic access)
|
|
statedb *state.StateDB
|
|
chainHeadFeed *event.Feed
|
|
}
|
|
|
|
func (bc *testBlockChain) CurrentBlock() *types.Block {
|
|
return types.NewBlock(&types.Header{
|
|
GasLimit: atomic.LoadUint64(&bc.gasLimit),
|
|
}, nil, nil, nil, trie.NewStackTrie(nil))
|
|
}
|
|
|
|
func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
|
|
return bc.CurrentBlock()
|
|
}
|
|
|
|
func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) {
|
|
return bc.statedb, nil
|
|
}
|
|
|
|
func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
|
|
return bc.chainHeadFeed.Subscribe(ch)
|
|
}
|
|
|
|
func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction {
|
|
return pricedTransaction(nonce, gaslimit, big.NewInt(1), key)
|
|
}
|
|
|
|
func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
|
|
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction {
|
|
data := make([]byte, bytes)
|
|
rand.Read(data)
|
|
|
|
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(0), gaslimit, gasprice, data), types.HomesteadSigner{}, key)
|
|
return tx
|
|
}
|
|
|
|
func dynamicFeeTx(nonce uint64, gaslimit uint64, gasFee *big.Int, tip *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
|
|
tx, _ := types.SignNewTx(key, types.LatestSignerForChainID(params.TestChainConfig.ChainID), &types.DynamicFeeTx{
|
|
ChainID: params.TestChainConfig.ChainID,
|
|
Nonce: nonce,
|
|
GasTipCap: tip,
|
|
GasFeeCap: gasFee,
|
|
Gas: gaslimit,
|
|
To: &common.Address{},
|
|
Value: big.NewInt(100),
|
|
Data: nil,
|
|
AccessList: nil,
|
|
})
|
|
return tx
|
|
}
|
|
|
|
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
|
|
return setupTxPoolWithConfig(params.TestChainConfig)
|
|
}
|
|
|
|
func setupTxPoolWithConfig(config *params.ChainConfig) (*TxPool, *ecdsa.PrivateKey) {
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{10000000, statedb, new(event.Feed)}
|
|
|
|
key, _ := crypto.GenerateKey()
|
|
pool := NewTxPool(testTxPoolConfig, config, blockchain)
|
|
|
|
// wait for the pool to initialize
|
|
<-pool.initDoneCh
|
|
return pool, key
|
|
}
|
|
|
|
// validateTxPoolInternals checks various consistency invariants within the pool.
|
|
func validateTxPoolInternals(pool *TxPool) error {
|
|
pool.mu.RLock()
|
|
defer pool.mu.RUnlock()
|
|
|
|
// Ensure the total transaction set is consistent with pending + queued
|
|
pending, queued := pool.stats()
|
|
if total := pool.all.Count(); total != pending+queued {
|
|
return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
|
|
}
|
|
pool.priced.Reheap()
|
|
priced, remote := pool.priced.urgent.Len()+pool.priced.floating.Len(), pool.all.RemoteCount()
|
|
if priced != remote {
|
|
return fmt.Errorf("total priced transaction count %d != %d", priced, remote)
|
|
}
|
|
// Ensure the next nonce to assign is the correct one
|
|
for addr, txs := range pool.pending {
|
|
// Find the last transaction
|
|
var last uint64
|
|
for nonce := range txs.txs.items {
|
|
if last < nonce {
|
|
last = nonce
|
|
}
|
|
}
|
|
if nonce := pool.pendingNonces.get(addr); nonce != last+1 {
|
|
return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// validateEvents checks that the correct number of transaction addition events
|
|
// were fired on the pool's event feed.
|
|
func validateEvents(events chan NewTxsEvent, count int) error {
|
|
var received []*types.Transaction
|
|
|
|
for len(received) < count {
|
|
select {
|
|
case ev := <-events:
|
|
received = append(received, ev.Txs...)
|
|
case <-time.After(time.Second):
|
|
return fmt.Errorf("event #%d not fired", len(received))
|
|
}
|
|
}
|
|
if len(received) > count {
|
|
return fmt.Errorf("more than %d events fired: %v", count, received[count:])
|
|
}
|
|
select {
|
|
case ev := <-events:
|
|
return fmt.Errorf("more than %d events fired: %v", count, ev.Txs)
|
|
|
|
case <-time.After(50 * time.Millisecond):
|
|
// This branch should be "default", but it's a data race between goroutines,
|
|
// reading the event channel and pushing into it, so better wait a bit ensuring
|
|
// really nothing gets injected.
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func deriveSender(tx *types.Transaction) (common.Address, error) {
|
|
return types.Sender(types.HomesteadSigner{}, tx)
|
|
}
|
|
|
|
type testChain struct {
|
|
*testBlockChain
|
|
address common.Address
|
|
trigger *bool
|
|
}
|
|
|
|
// testChain.State() is used multiple times to reset the pending state.
|
|
// when simulate is true it will create a state that indicates
|
|
// that tx0 and tx1 are included in the chain.
|
|
func (c *testChain) State() (*state.StateDB, error) {
|
|
// delay "state change" by one. The tx pool fetches the
|
|
// state multiple times and by delaying it a bit we simulate
|
|
// a state change between those fetches.
|
|
stdb := c.statedb
|
|
if *c.trigger {
|
|
c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
// simulate that the new head block included tx0 and tx1
|
|
c.statedb.SetNonce(c.address, 2)
|
|
c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether))
|
|
*c.trigger = false
|
|
}
|
|
return stdb, nil
|
|
}
|
|
|
|
// This test simulates a scenario where a new block is imported during a
|
|
// state reset and tests whether the pending state is in sync with the
|
|
// block head event that initiated the resetState().
|
|
func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
var (
|
|
key, _ = crypto.GenerateKey()
|
|
address = crypto.PubkeyToAddress(key.PublicKey)
|
|
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
trigger = false
|
|
)
|
|
|
|
// setup pool with 2 transaction in it
|
|
statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
|
|
blockchain := &testChain{&testBlockChain{1000000000, statedb, new(event.Feed)}, address, &trigger}
|
|
|
|
tx0 := transaction(0, 100000, key)
|
|
tx1 := transaction(1, 100000, key)
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
nonce := pool.Nonce(address)
|
|
if nonce != 0 {
|
|
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
|
|
}
|
|
|
|
pool.AddRemotesSync([]*types.Transaction{tx0, tx1})
|
|
|
|
nonce = pool.Nonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
|
|
// trigger state change in the background
|
|
trigger = true
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
nonce = pool.Nonce(address)
|
|
if nonce != 2 {
|
|
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
|
|
}
|
|
}
|
|
|
|
func testAddBalance(pool *TxPool, addr common.Address, amount *big.Int) {
|
|
pool.mu.Lock()
|
|
pool.currentState.AddBalance(addr, amount)
|
|
pool.mu.Unlock()
|
|
}
|
|
|
|
func testSetNonce(pool *TxPool, addr common.Address, nonce uint64) {
|
|
pool.mu.Lock()
|
|
pool.currentState.SetNonce(addr, nonce)
|
|
pool.mu.Unlock()
|
|
}
|
|
|
|
func TestInvalidTransactions(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
tx := transaction(0, 100, key)
|
|
from, _ := deriveSender(tx)
|
|
|
|
testAddBalance(pool, from, big.NewInt(1))
|
|
if err := pool.AddRemote(tx); !errors.Is(err, ErrInsufficientFunds) {
|
|
t.Error("expected", ErrInsufficientFunds)
|
|
}
|
|
|
|
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice()))
|
|
testAddBalance(pool, from, balance)
|
|
if err := pool.AddRemote(tx); !errors.Is(err, ErrIntrinsicGas) {
|
|
t.Error("expected", ErrIntrinsicGas, "got", err)
|
|
}
|
|
|
|
testSetNonce(pool, from, 1)
|
|
testAddBalance(pool, from, big.NewInt(0xffffffffffffff))
|
|
tx = transaction(0, 100000, key)
|
|
if err := pool.AddRemote(tx); !errors.Is(err, ErrNonceTooLow) {
|
|
t.Error("expected", ErrNonceTooLow)
|
|
}
|
|
|
|
tx = transaction(1, 100000, key)
|
|
pool.gasPrice = big.NewInt(1000)
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced {
|
|
t.Error("expected", ErrUnderpriced, "got", err)
|
|
}
|
|
if err := pool.AddLocal(tx); err != nil {
|
|
t.Error("expected", nil, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionQueue(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
tx := transaction(0, 100, key)
|
|
from, _ := deriveSender(tx)
|
|
testAddBalance(pool, from, big.NewInt(1000))
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
pool.enqueueTx(tx.Hash(), tx, false, true)
|
|
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected valid txs to be 1 is", len(pool.pending))
|
|
}
|
|
|
|
tx = transaction(1, 100, key)
|
|
from, _ = deriveSender(tx)
|
|
testSetNonce(pool, from, 2)
|
|
pool.enqueueTx(tx.Hash(), tx, false, true)
|
|
|
|
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
|
|
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
|
|
t.Error("expected transaction to be in tx pool")
|
|
}
|
|
if len(pool.queue) > 0 {
|
|
t.Error("expected transaction queue to be empty. is", len(pool.queue))
|
|
}
|
|
}
|
|
|
|
func TestTransactionQueue2(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
tx1 := transaction(0, 100, key)
|
|
tx2 := transaction(10, 100, key)
|
|
tx3 := transaction(11, 100, key)
|
|
from, _ := deriveSender(tx1)
|
|
testAddBalance(pool, from, big.NewInt(1000))
|
|
pool.reset(nil, nil)
|
|
|
|
pool.enqueueTx(tx1.Hash(), tx1, false, true)
|
|
pool.enqueueTx(tx2.Hash(), tx2, false, true)
|
|
pool.enqueueTx(tx3.Hash(), tx3, false, true)
|
|
|
|
pool.promoteExecutables([]common.Address{from})
|
|
if len(pool.pending) != 1 {
|
|
t.Error("expected pending length to be 1, got", len(pool.pending))
|
|
}
|
|
if pool.queue[from].Len() != 2 {
|
|
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
|
|
}
|
|
}
|
|
|
|
func TestTransactionNegativeValue(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key)
|
|
from, _ := deriveSender(tx)
|
|
testAddBalance(pool, from, big.NewInt(1))
|
|
if err := pool.AddRemote(tx); err != ErrNegativeValue {
|
|
t.Error("expected", ErrNegativeValue, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionTipAboveFeeCap(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
|
|
tx := dynamicFeeTx(0, 100, big.NewInt(1), big.NewInt(2), key)
|
|
|
|
if err := pool.AddRemote(tx); err != ErrTipAboveFeeCap {
|
|
t.Error("expected", ErrTipAboveFeeCap, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionVeryHighValues(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
|
|
veryBigNumber := big.NewInt(1)
|
|
veryBigNumber.Lsh(veryBigNumber, 300)
|
|
|
|
tx := dynamicFeeTx(0, 100, big.NewInt(1), veryBigNumber, key)
|
|
if err := pool.AddRemote(tx); err != ErrTipVeryHigh {
|
|
t.Error("expected", ErrTipVeryHigh, "got", err)
|
|
}
|
|
|
|
tx2 := dynamicFeeTx(0, 100, veryBigNumber, big.NewInt(1), key)
|
|
if err := pool.AddRemote(tx2); err != ErrFeeCapVeryHigh {
|
|
t.Error("expected", ErrFeeCapVeryHigh, "got", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionChainFork(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
statedb.AddBalance(addr, big.NewInt(100000000000000))
|
|
|
|
pool.chain = &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
<-pool.requestReset(nil, nil)
|
|
}
|
|
resetState()
|
|
|
|
tx := transaction(0, 100000, key)
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
pool.removeTx(tx.Hash(), true)
|
|
|
|
// reset the pool's internal state
|
|
resetState()
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
}
|
|
|
|
func TestTransactionDoubleNonce(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
resetState := func() {
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
statedb.AddBalance(addr, big.NewInt(100000000000000))
|
|
|
|
pool.chain = &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
<-pool.requestReset(nil, nil)
|
|
}
|
|
resetState()
|
|
|
|
signer := types.HomesteadSigner{}
|
|
tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key)
|
|
tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key)
|
|
tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key)
|
|
|
|
// Add the first two transaction, ensure higher priced stays only
|
|
if replace, err := pool.add(tx1, false); err != nil || replace {
|
|
t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
|
|
}
|
|
if replace, err := pool.add(tx2, false); err != nil || !replace {
|
|
t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
|
|
}
|
|
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
|
|
// Add the third transaction and ensure it's not saved (smaller price)
|
|
pool.add(tx3, false)
|
|
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
|
|
if pool.pending[addr].Len() != 1 {
|
|
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
|
|
}
|
|
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
|
|
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
|
|
}
|
|
// Ensure the total transaction count is correct
|
|
if pool.all.Count() != 1 {
|
|
t.Error("expected 1 total transactions, got", pool.all.Count())
|
|
}
|
|
}
|
|
|
|
func TestTransactionMissingNonce(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, addr, big.NewInt(100000000000000))
|
|
tx := transaction(1, 100000, key)
|
|
if _, err := pool.add(tx, false); err != nil {
|
|
t.Error("didn't expect error", err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Error("expected 0 pending transactions, got", len(pool.pending))
|
|
}
|
|
if pool.queue[addr].Len() != 1 {
|
|
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
|
|
}
|
|
if pool.all.Count() != 1 {
|
|
t.Error("expected 1 total transactions, got", pool.all.Count())
|
|
}
|
|
}
|
|
|
|
func TestTransactionNonceRecovery(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const n = 10
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
testSetNonce(pool, addr, n)
|
|
testAddBalance(pool, addr, big.NewInt(100000000000000))
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
tx := transaction(n, 100000, key)
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Error(err)
|
|
}
|
|
// simulate some weird re-order of transactions and missing nonce(s)
|
|
testSetNonce(pool, addr, n-1)
|
|
<-pool.requestReset(nil, nil)
|
|
if fn := pool.Nonce(addr); fn != n-1 {
|
|
t.Errorf("expected nonce to be %d, got %d", n-1, fn)
|
|
}
|
|
}
|
|
|
|
// Tests that if an account runs out of funds, any pending and queued transactions
|
|
// are dropped.
|
|
func TestTransactionDropping(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000))
|
|
|
|
// Add some pending and some queued transactions
|
|
var (
|
|
tx0 = transaction(0, 100, key)
|
|
tx1 = transaction(1, 200, key)
|
|
tx2 = transaction(2, 300, key)
|
|
tx10 = transaction(10, 100, key)
|
|
tx11 = transaction(11, 200, key)
|
|
tx12 = transaction(12, 300, key)
|
|
)
|
|
pool.all.Add(tx0, false)
|
|
pool.priced.Put(tx0, false)
|
|
pool.promoteTx(account, tx0.Hash(), tx0)
|
|
|
|
pool.all.Add(tx1, false)
|
|
pool.priced.Put(tx1, false)
|
|
pool.promoteTx(account, tx1.Hash(), tx1)
|
|
|
|
pool.all.Add(tx2, false)
|
|
pool.priced.Put(tx2, false)
|
|
pool.promoteTx(account, tx2.Hash(), tx2)
|
|
|
|
pool.enqueueTx(tx10.Hash(), tx10, false, true)
|
|
pool.enqueueTx(tx11.Hash(), tx11, false, true)
|
|
pool.enqueueTx(tx12.Hash(), tx12, false, true)
|
|
|
|
// Check that pre and post validations leave the pool as is
|
|
if pool.pending[account].Len() != 3 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
|
|
}
|
|
if pool.queue[account].Len() != 3 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
|
|
}
|
|
if pool.all.Count() != 6 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
if pool.pending[account].Len() != 3 {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
|
|
}
|
|
if pool.queue[account].Len() != 3 {
|
|
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
|
|
}
|
|
if pool.all.Count() != 6 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
|
|
}
|
|
// Reduce the balance of the account, and check that invalidated transactions are dropped
|
|
testAddBalance(pool, account, big.NewInt(-650))
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
|
|
t.Errorf("out-of-fund pending transaction present: %v", tx1)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
|
|
t.Errorf("out-of-fund queued transaction present: %v", tx11)
|
|
}
|
|
if pool.all.Count() != 4 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4)
|
|
}
|
|
// Reduce the block gas limit, check that invalidated transactions are dropped
|
|
atomic.StoreUint64(&pool.chain.(*testBlockChain).gasLimit, 100)
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
|
|
t.Errorf("funded pending transaction missing: %v", tx0)
|
|
}
|
|
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
|
|
t.Errorf("over-gased pending transaction present: %v", tx1)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
|
|
t.Errorf("funded queued transaction missing: %v", tx10)
|
|
}
|
|
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
|
|
t.Errorf("over-gased queued transaction present: %v", tx11)
|
|
}
|
|
if pool.all.Count() != 2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2)
|
|
}
|
|
}
|
|
|
|
// Tests that if a transaction is dropped from the current pending pool (e.g. out
|
|
// of fund), all consecutive (still valid, but not executable) transactions are
|
|
// postponed back into the future queue to prevent broadcasting them.
|
|
func TestTransactionPostponing(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the postponing with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create two test accounts to produce different gap profiles with
|
|
keys := make([]*ecdsa.PrivateKey, 2)
|
|
accs := make([]common.Address, len(keys))
|
|
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
|
|
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100))
|
|
}
|
|
// Add a batch consecutive pending transactions for validation
|
|
txs := []*types.Transaction{}
|
|
for i, key := range keys {
|
|
|
|
for j := 0; j < 100; j++ {
|
|
var tx *types.Transaction
|
|
if (i+j)%2 == 0 {
|
|
tx = transaction(uint64(j), 25000, key)
|
|
} else {
|
|
tx = transaction(uint64(j), 50000, key)
|
|
}
|
|
txs = append(txs, tx)
|
|
}
|
|
}
|
|
for i, err := range pool.AddRemotesSync(txs) {
|
|
if err != nil {
|
|
t.Fatalf("tx %d: failed to add transactions: %v", i, err)
|
|
}
|
|
}
|
|
// Check that pre and post validations leave the pool as is
|
|
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
|
|
}
|
|
if pool.all.Count() != len(txs) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
|
|
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
|
|
}
|
|
if pool.all.Count() != len(txs) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
|
|
}
|
|
// Reduce the balance of the account, and check that transactions are reorganised
|
|
for _, addr := range accs {
|
|
testAddBalance(pool, addr, big.NewInt(-1))
|
|
}
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
// The first account's first transaction remains valid, check that subsequent
|
|
// ones are either filtered out, or queued up for later.
|
|
if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
|
|
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
|
|
}
|
|
for i, tx := range txs[1:100] {
|
|
if i%2 == 1 {
|
|
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
|
|
}
|
|
} else {
|
|
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
|
|
}
|
|
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
|
|
}
|
|
}
|
|
}
|
|
// The second account's first transaction got invalid, check that all transactions
|
|
// are either filtered out, or queued up for later.
|
|
if pool.pending[accs[1]] != nil {
|
|
t.Errorf("invalidated account still has pending transactions")
|
|
}
|
|
for i, tx := range txs[100:] {
|
|
if i%2 == 1 {
|
|
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
|
|
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
|
|
}
|
|
} else {
|
|
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
|
|
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
|
|
}
|
|
}
|
|
}
|
|
if pool.all.Count() != len(txs)/2 {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction pool has both executable and non-executable
|
|
// transactions from an origin account, filling the nonce gap moves all queued
|
|
// ones into the pending pool.
|
|
func TestTransactionGapFilling(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a pending and a queued transaction with a nonce-gap in between
|
|
pool.AddRemotesSync([]*types.Transaction{
|
|
transaction(0, 100000, key),
|
|
transaction(2, 100000, key),
|
|
})
|
|
pending, queued := pool.Stats()
|
|
if pending != 1 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Fill the nonce gap and ensure all transactions become pending
|
|
if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil {
|
|
t.Fatalf("failed to add gapped transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("gap-filling event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to a single account goes above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
func TestTransactionQueueAccountLimiting(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
|
|
if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if len(pool.pending) != 0 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
|
|
}
|
|
if i <= testTxPoolConfig.AccountQueue {
|
|
if pool.queue[account].Len() != int(i) {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
|
|
}
|
|
} else {
|
|
if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
|
|
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
|
|
}
|
|
}
|
|
}
|
|
if pool.all.Count() != int(testTxPoolConfig.AccountQueue) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some threshold, the higher transactions are dropped to prevent DOS attacks.
|
|
//
|
|
// This logic should not hold for local transactions, unless the local tracking
|
|
// mechanism is disabled.
|
|
func TestTransactionQueueGlobalLimiting(t *testing.T) {
|
|
testTransactionQueueGlobalLimiting(t, false)
|
|
}
|
|
func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
|
|
testTransactionQueueGlobalLimiting(t, true)
|
|
}
|
|
|
|
func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.NoLocals = nolocals
|
|
config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts and fund them (last one will be the local)
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
local := keys[len(keys)-1]
|
|
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := make(types.Transactions, 0, 3*config.GlobalQueue)
|
|
for len(txs) < cap(txs) {
|
|
key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
|
|
txs = append(txs, transaction(nonces[addr]+1, 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
queued := 0
|
|
for addr, list := range pool.queue {
|
|
if list.Len() > int(config.AccountQueue) {
|
|
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
|
|
}
|
|
queued += list.Len()
|
|
}
|
|
if queued > int(config.GlobalQueue) {
|
|
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
|
|
}
|
|
// Generate a batch of transactions from the local account and import them
|
|
txs = txs[:0]
|
|
for i := uint64(0); i < 3*config.GlobalQueue; i++ {
|
|
txs = append(txs, transaction(i+1, 100000, local))
|
|
}
|
|
pool.AddLocals(txs)
|
|
|
|
// If locals are disabled, the previous eviction algorithm should apply here too
|
|
if nolocals {
|
|
queued := 0
|
|
for addr, list := range pool.queue {
|
|
if list.Len() > int(config.AccountQueue) {
|
|
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
|
|
}
|
|
queued += list.Len()
|
|
}
|
|
if queued > int(config.GlobalQueue) {
|
|
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
|
|
}
|
|
} else {
|
|
// Local exemptions are enabled, make sure the local account owned the queue
|
|
if len(pool.queue) != 1 {
|
|
t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
|
|
}
|
|
// Also ensure no local transactions are ever dropped, even if above global limits
|
|
if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
|
|
t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that if an account remains idle for a prolonged amount of time, any
|
|
// non-executable transactions queued up are dropped to prevent wasting resources
|
|
// on shuffling them around.
|
|
//
|
|
// This logic should not hold for local transactions, unless the local tracking
|
|
// mechanism is disabled.
|
|
func TestTransactionQueueTimeLimiting(t *testing.T) {
|
|
testTransactionQueueTimeLimiting(t, false)
|
|
}
|
|
func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) {
|
|
testTransactionQueueTimeLimiting(t, true)
|
|
}
|
|
|
|
func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
|
|
// Reduce the eviction interval to a testable amount
|
|
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
|
|
evictionInterval = time.Millisecond * 100
|
|
|
|
// Create the pool to test the non-expiration enforcement
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.Lifetime = time.Second
|
|
config.NoLocals = nolocals
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create two test accounts to ensure remotes expire but locals do not
|
|
local, _ := crypto.GenerateKey()
|
|
remote, _ := crypto.GenerateKey()
|
|
|
|
testAddBalance(pool, crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
|
|
testAddBalance(pool, crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
|
|
|
|
// Add the two transactions and ensure they both are queued up
|
|
if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Allow the eviction interval to run
|
|
time.Sleep(2 * evictionInterval)
|
|
|
|
// Transactions should not be evicted from the queue yet since lifetime duration has not passed
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains
|
|
time.Sleep(2 * config.Lifetime)
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if nolocals {
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
} else {
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// remove current transactions and increase nonce to prepare for a reset and cleanup
|
|
statedb.SetNonce(crypto.PubkeyToAddress(remote.PublicKey), 2)
|
|
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
|
|
<-pool.requestReset(nil, nil)
|
|
|
|
// make sure queue, pending are cleared
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Queue gapped transactions
|
|
if err := pool.AddLocal(pricedTransaction(4, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
if err := pool.addRemoteSync(pricedTransaction(4, 100000, big.NewInt(1), remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
time.Sleep(5 * evictionInterval) // A half lifetime pass
|
|
|
|
// Queue executable transactions, the life cycle should be restarted.
|
|
if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
if err := pool.addRemoteSync(pricedTransaction(2, 100000, big.NewInt(1), remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
time.Sleep(6 * evictionInterval)
|
|
|
|
// All gapped transactions shouldn't be kicked out
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// The whole life time pass after last promotion, kick out stale transactions
|
|
time.Sleep(2 * config.Lifetime)
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if nolocals {
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
} else {
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that even if the transaction count belonging to a single account goes
|
|
// above some threshold, as long as the transactions are executable, they are
|
|
// accepted.
|
|
func TestTransactionPendingLimiting(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Keep queuing up transactions and make sure all above a limit are dropped
|
|
for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
|
|
if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
|
|
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
|
|
}
|
|
if pool.pending[account].Len() != int(i)+1 {
|
|
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
|
|
}
|
|
if len(pool.queue) != 0 {
|
|
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
|
|
}
|
|
}
|
|
if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) {
|
|
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5)
|
|
}
|
|
if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil {
|
|
t.Fatalf("event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, the higher transactions are dropped to prevent DOS
|
|
// attacks.
|
|
func TestTransactionPendingGlobalLimiting(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = config.AccountSlots * 10
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending := 0
|
|
for _, list := range pool.pending {
|
|
pending += list.Len()
|
|
}
|
|
if pending > int(config.GlobalSlots) {
|
|
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Test the limit on transaction size is enforced correctly.
|
|
// This test verifies every transaction having allowed size
|
|
// is added to the pool, and longer transactions are rejected.
|
|
func TestTransactionAllowedTxSize(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create a test account and fund it
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000000))
|
|
|
|
// Compute maximal data size for transactions (lower bound).
|
|
//
|
|
// It is assumed the fields in the transaction (except of the data) are:
|
|
// - nonce <= 32 bytes
|
|
// - gasPrice <= 32 bytes
|
|
// - gasLimit <= 32 bytes
|
|
// - recipient == 20 bytes
|
|
// - value <= 32 bytes
|
|
// - signature == 65 bytes
|
|
// All those fields are summed up to at most 213 bytes.
|
|
baseSize := uint64(213)
|
|
dataSize := txMaxSize - baseSize
|
|
|
|
// Try adding a transaction with maximal allowed size
|
|
tx := pricedDataTransaction(0, pool.currentMaxGas, big.NewInt(1), key, dataSize)
|
|
if err := pool.addRemoteSync(tx); err != nil {
|
|
t.Fatalf("failed to add transaction of size %d, close to maximal: %v", int(tx.Size()), err)
|
|
}
|
|
// Try adding a transaction with random allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(1, pool.currentMaxGas, big.NewInt(1), key, uint64(rand.Intn(int(dataSize))))); err != nil {
|
|
t.Fatalf("failed to add transaction of random allowed size: %v", err)
|
|
}
|
|
// Try adding a transaction of minimal not allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, txMaxSize)); err == nil {
|
|
t.Fatalf("expected rejection on slightly oversize transaction")
|
|
}
|
|
// Try adding a transaction of random not allowed size
|
|
if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, dataSize+1+uint64(rand.Intn(10*txMaxSize)))); err == nil {
|
|
t.Fatalf("expected rejection on oversize transaction")
|
|
}
|
|
// Run some sanity checks on the pool internals
|
|
pending, queued := pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if transactions start being capped, transactions are also removed from 'all'
|
|
func TestTransactionCapClearsFromAll(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.AccountSlots = 2
|
|
config.AccountQueue = 2
|
|
config.GlobalSlots = 8
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts and fund them
|
|
key, _ := crypto.GenerateKey()
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, addr, big.NewInt(1000000))
|
|
|
|
txs := types.Transactions{}
|
|
for j := 0; j < int(config.GlobalSlots)*2; j++ {
|
|
txs = append(txs, transaction(uint64(j), 100000, key))
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotes(txs)
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that if the transaction count belonging to multiple accounts go above
|
|
// some hard threshold, if they are under the minimum guaranteed slot count then
|
|
// the transactions are still kept.
|
|
func TestTransactionPendingMinimumAllowance(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the limit enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 1
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 5)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions
|
|
nonces := make(map[common.Address]uint64)
|
|
|
|
txs := types.Transactions{}
|
|
for _, key := range keys {
|
|
addr := crypto.PubkeyToAddress(key.PublicKey)
|
|
for j := 0; j < int(config.AccountSlots)*2; j++ {
|
|
txs = append(txs, transaction(nonces[addr], 100000, key))
|
|
nonces[addr]++
|
|
}
|
|
}
|
|
// Import the batch and verify that limits have been enforced
|
|
pool.AddRemotesSync(txs)
|
|
|
|
for addr, list := range pool.pending {
|
|
if list.Len() != int(config.AccountSlots) {
|
|
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that setting the transaction pool gas price to a higher value correctly
|
|
// discards everything cheaper than that and moves any gapped transactions back
|
|
// from the pending pool to the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolRepricing(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0]))
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0]))
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1]))
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1]))
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[1]))
|
|
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[2]))
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2]))
|
|
txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[2]))
|
|
|
|
ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[3])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotesSync(txs)
|
|
pool.AddLocal(ltx)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 7 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
|
|
}
|
|
if queued != 3 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
|
|
}
|
|
if err := validateEvents(events, 7); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Reprice the pool and check that underpriced transactions get dropped
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 5 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Check that we can't add the old transactions back
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[2])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// However we can add local underpriced transactions
|
|
tx := pricedTransaction(1, 100000, big.NewInt(1), keys[3])
|
|
if err := pool.AddLocal(tx); err != nil {
|
|
t.Fatalf("failed to add underpriced local transaction: %v", err)
|
|
}
|
|
if pending, _ = pool.Stats(); pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("post-reprice local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// And we can fill gaps with properly priced transactions
|
|
if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(2), keys[0])); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), keys[1])); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), keys[2])); err != nil {
|
|
t.Fatalf("failed to add queued transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 5); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that setting the transaction pool gas price to a higher value correctly
|
|
// discards everything cheaper (legacy & dynamic fee) than that and moves any
|
|
// gapped transactions back from the pending pool to the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolRepricingDynamicFee(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
pool, _ := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0]))
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0]))
|
|
|
|
txs = append(txs, dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1]))
|
|
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(3), big.NewInt(2), keys[1]))
|
|
txs = append(txs, dynamicFeeTx(2, 100000, big.NewInt(3), big.NewInt(2), keys[1]))
|
|
|
|
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(2), big.NewInt(2), keys[2]))
|
|
txs = append(txs, dynamicFeeTx(2, 100000, big.NewInt(1), big.NewInt(1), keys[2]))
|
|
txs = append(txs, dynamicFeeTx(3, 100000, big.NewInt(2), big.NewInt(2), keys[2]))
|
|
|
|
ltx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[3])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotesSync(txs)
|
|
pool.AddLocal(ltx)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 7 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
|
|
}
|
|
if queued != 3 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
|
|
}
|
|
if err := validateEvents(events, 7); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Reprice the pool and check that underpriced transactions get dropped
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 5 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Check that we can't add the old transactions back
|
|
tx := pricedTransaction(1, 100000, big.NewInt(1), keys[0])
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
tx = dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1])
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
tx = dynamicFeeTx(2, 100000, big.NewInt(1), big.NewInt(1), keys[2])
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// However we can add local underpriced transactions
|
|
tx = dynamicFeeTx(1, 100000, big.NewInt(1), big.NewInt(1), keys[3])
|
|
if err := pool.AddLocal(tx); err != nil {
|
|
t.Fatalf("failed to add underpriced local transaction: %v", err)
|
|
}
|
|
if pending, _ = pool.Stats(); pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("post-reprice local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// And we can fill gaps with properly priced transactions
|
|
tx = pricedTransaction(1, 100000, big.NewInt(2), keys[0])
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
tx = dynamicFeeTx(0, 100000, big.NewInt(3), big.NewInt(2), keys[1])
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Fatalf("failed to add pending transaction: %v", err)
|
|
}
|
|
tx = dynamicFeeTx(2, 100000, big.NewInt(2), big.NewInt(2), keys[2])
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Fatalf("failed to add queued transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 5); err != nil {
|
|
t.Fatalf("post-reprice event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that setting the transaction pool gas price to a higher value does not
|
|
// remove local transactions (legacy & dynamic fee).
|
|
func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, eip1559Config, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 3)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000))
|
|
}
|
|
// Create transaction (both pending and queued) with a linearly growing gasprice
|
|
for i := uint64(0); i < 500; i++ {
|
|
// Add pending transaction.
|
|
pendingTx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2])
|
|
if err := pool.AddLocal(pendingTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
// Add queued transaction.
|
|
queuedTx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2])
|
|
if err := pool.AddLocal(queuedTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Add pending dynamic fee transaction.
|
|
pendingTx = dynamicFeeTx(i, 100000, big.NewInt(int64(i)+1), big.NewInt(int64(i)), keys[1])
|
|
if err := pool.AddLocal(pendingTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
// Add queued dynamic fee transaction.
|
|
queuedTx = dynamicFeeTx(i+501, 100000, big.NewInt(int64(i)+1), big.NewInt(int64(i)), keys[1])
|
|
if err := pool.AddLocal(queuedTx); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
pending, queued := pool.Stats()
|
|
expPending, expQueued := 1000, 1000
|
|
validate := func() {
|
|
pending, queued = pool.Stats()
|
|
if pending != expPending {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending)
|
|
}
|
|
if queued != expQueued {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued)
|
|
}
|
|
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
validate()
|
|
|
|
// Reprice the pool and check that nothing is dropped
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
validate()
|
|
|
|
pool.SetGasPrice(big.NewInt(2))
|
|
pool.SetGasPrice(big.NewInt(4))
|
|
pool.SetGasPrice(big.NewInt(8))
|
|
pool.SetGasPrice(big.NewInt(100))
|
|
validate()
|
|
}
|
|
|
|
// Tests that when the pool reaches its global transaction limit, underpriced
|
|
// transactions are gradually shifted out for more expensive ones and any gapped
|
|
// pending transactions are moved into the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolUnderpricing(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 2
|
|
config.GlobalQueue = 2
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0]))
|
|
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1]))
|
|
|
|
ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotes(txs)
|
|
pool.AddLocal(ltx)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 3); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding an underpriced transaction on block limit fails
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
// Ensure that adding high priced transactions drops cheap ones, but not own
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("additional event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding local transactions can push out even higher priced ones
|
|
ltx = pricedTransaction(1, 100000, big.NewInt(0), keys[2])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to append underpriced local transaction: %v", err)
|
|
}
|
|
ltx = pricedTransaction(0, 100000, big.NewInt(0), keys[3])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to add new underpriced local transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that more expensive transactions push out cheap ones from the pool, but
|
|
// without producing instability by creating gaps that start jumping transactions
|
|
// back and forth between queued/pending.
|
|
func TestTransactionPoolStableUnderpricing(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.GlobalSlots = 128
|
|
config.GlobalQueue = 0
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 2)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Fill up the entire queue with the same transaction price points
|
|
txs := types.Transactions{}
|
|
for i := uint64(0); i < config.GlobalSlots; i++ {
|
|
txs = append(txs, pricedTransaction(i, 100000, big.NewInt(1), keys[0]))
|
|
}
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != int(config.GlobalSlots) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, int(config.GlobalSlots)); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil {
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != int(config.GlobalSlots) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("additional event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that when the pool reaches its global transaction limit, underpriced
|
|
// transactions (legacy & dynamic fee) are gradually shifted out for more
|
|
// expensive ones and any gapped pending transactions are moved into the queue.
|
|
//
|
|
// Note, local transactions are never allowed to be dropped.
|
|
func TestTransactionPoolUnderpricingDynamicFee(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, _ := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
|
|
pool.config.GlobalSlots = 2
|
|
pool.config.GlobalQueue = 2
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a number of test accounts and fund them
|
|
keys := make([]*ecdsa.PrivateKey, 4)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, dynamicFeeTx(0, 100000, big.NewInt(3), big.NewInt(2), keys[0]))
|
|
txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0]))
|
|
txs = append(txs, dynamicFeeTx(1, 100000, big.NewInt(2), big.NewInt(1), keys[1]))
|
|
|
|
ltx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[2])
|
|
|
|
// Import the batch and that both pending and queued transactions match up
|
|
pool.AddRemotes(txs) // Pend K0:0, K0:1; Que K1:1
|
|
pool.AddLocal(ltx) // +K2:0 => Pend K0:0, K0:1, K2:0; Que K1:1
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 3); err != nil {
|
|
t.Fatalf("original event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
|
|
// Ensure that adding an underpriced transaction fails
|
|
tx := dynamicFeeTx(0, 100000, big.NewInt(2), big.NewInt(1), keys[1])
|
|
if err := pool.AddRemote(tx); err != ErrUnderpriced { // Pend K0:0, K0:1, K2:0; Que K1:1
|
|
t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
|
|
}
|
|
|
|
// Ensure that adding high priced transactions drops cheap ones, but not own
|
|
tx = pricedTransaction(0, 100000, big.NewInt(2), keys[1])
|
|
if err := pool.AddRemote(tx); err != nil { // +K1:0, -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
|
|
tx = pricedTransaction(2, 100000, big.NewInt(3), keys[1])
|
|
if err := pool.AddRemote(tx); err != nil { // +K1:2, -K0:1 => Pend K0:0 K1:0, K2:0; Que K1:2
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
tx = dynamicFeeTx(3, 100000, big.NewInt(4), big.NewInt(1), keys[1])
|
|
if err := pool.AddRemote(tx); err != nil { // +K1:3, -K1:0 => Pend K0:0 K2:0; Que K1:2 K1:3
|
|
t.Fatalf("failed to add well priced transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateEvents(events, 1); err != nil {
|
|
t.Fatalf("additional event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Ensure that adding local transactions can push out even higher priced ones
|
|
ltx = dynamicFeeTx(1, 100000, big.NewInt(0), big.NewInt(0), keys[2])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to append underpriced local transaction: %v", err)
|
|
}
|
|
ltx = dynamicFeeTx(0, 100000, big.NewInt(0), big.NewInt(0), keys[3])
|
|
if err := pool.AddLocal(ltx); err != nil {
|
|
t.Fatalf("failed to add new underpriced local transaction: %v", err)
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != 3 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
|
|
}
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("local event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests whether highest fee cap transaction is retained after a batch of high effective
|
|
// tip transactions are added and vice versa
|
|
func TestDualHeapEviction(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
pool, _ := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
|
|
pool.config.GlobalSlots = 10
|
|
pool.config.GlobalQueue = 10
|
|
|
|
var (
|
|
highTip, highCap *types.Transaction
|
|
baseFee int
|
|
)
|
|
|
|
check := func(tx *types.Transaction, name string) {
|
|
if pool.all.GetRemote(tx.Hash()) == nil {
|
|
t.Fatalf("highest %s transaction evicted from the pool", name)
|
|
}
|
|
}
|
|
|
|
add := func(urgent bool) {
|
|
for i := 0; i < 20; i++ {
|
|
var tx *types.Transaction
|
|
// Create a test accounts and fund it
|
|
key, _ := crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000000))
|
|
if urgent {
|
|
tx = dynamicFeeTx(0, 100000, big.NewInt(int64(baseFee+1+i)), big.NewInt(int64(1+i)), key)
|
|
highTip = tx
|
|
} else {
|
|
tx = dynamicFeeTx(0, 100000, big.NewInt(int64(baseFee+200+i)), big.NewInt(1), key)
|
|
highCap = tx
|
|
}
|
|
pool.AddRemotesSync([]*types.Transaction{tx})
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending+queued != 20 {
|
|
t.Fatalf("transaction count mismatch: have %d, want %d", pending+queued, 10)
|
|
}
|
|
}
|
|
|
|
add(false)
|
|
for baseFee = 0; baseFee <= 1000; baseFee += 100 {
|
|
pool.priced.SetBaseFee(big.NewInt(int64(baseFee)))
|
|
add(true)
|
|
check(highCap, "fee cap")
|
|
add(false)
|
|
check(highTip, "effective tip")
|
|
}
|
|
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that the pool rejects duplicate transactions.
|
|
func TestTransactionDeduplication(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create a test account to add transactions with
|
|
key, _ := crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
|
|
|
|
// Create a batch of transactions and add a few of them
|
|
txs := make([]*types.Transaction, 16)
|
|
for i := 0; i < len(txs); i++ {
|
|
txs[i] = pricedTransaction(uint64(i), 100000, big.NewInt(1), key)
|
|
}
|
|
var firsts []*types.Transaction
|
|
for i := 0; i < len(txs); i += 2 {
|
|
firsts = append(firsts, txs[i])
|
|
}
|
|
errs := pool.AddRemotesSync(firsts)
|
|
if len(errs) != len(firsts) {
|
|
t.Fatalf("first add mismatching result count: have %d, want %d", len(errs), len(firsts))
|
|
}
|
|
for i, err := range errs {
|
|
if err != nil {
|
|
t.Errorf("add %d failed: %v", i, err)
|
|
}
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 1 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
|
|
}
|
|
if queued != len(txs)/2-1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, len(txs)/2-1)
|
|
}
|
|
// Try to add all of them now and ensure previous ones error out as knowns
|
|
errs = pool.AddRemotesSync(txs)
|
|
if len(errs) != len(txs) {
|
|
t.Fatalf("all add mismatching result count: have %d, want %d", len(errs), len(txs))
|
|
}
|
|
for i, err := range errs {
|
|
if i%2 == 0 && err == nil {
|
|
t.Errorf("add %d succeeded, should have failed as known", i)
|
|
}
|
|
if i%2 == 1 && err != nil {
|
|
t.Errorf("add %d failed: %v", i, err)
|
|
}
|
|
}
|
|
pending, queued = pool.Stats()
|
|
if pending != len(txs) {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, len(txs))
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that the pool rejects replacement transactions that don't meet the minimum
|
|
// price bump required.
|
|
func TestTransactionReplacement(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Create a test account to add transactions with
|
|
key, _ := crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
|
|
|
|
// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
|
|
price := int64(100)
|
|
threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100
|
|
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil {
|
|
t.Fatalf("failed to add original cheap pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil {
|
|
t.Fatalf("failed to replace original cheap pending transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("cheap replacement event firing failed: %v", err)
|
|
}
|
|
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil {
|
|
t.Fatalf("failed to add original proper pending transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil {
|
|
t.Fatalf("failed to replace original proper pending transaction: %v", err)
|
|
}
|
|
if err := validateEvents(events, 2); err != nil {
|
|
t.Fatalf("proper replacement event firing failed: %v", err)
|
|
}
|
|
|
|
// Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil {
|
|
t.Fatalf("failed to add original cheap queued transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil {
|
|
t.Fatalf("failed to replace original cheap queued transaction: %v", err)
|
|
}
|
|
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil {
|
|
t.Fatalf("failed to add original proper queued transaction: %v", err)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
|
|
}
|
|
if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil {
|
|
t.Fatalf("failed to replace original proper queued transaction: %v", err)
|
|
}
|
|
|
|
if err := validateEvents(events, 0); err != nil {
|
|
t.Fatalf("queued replacement event firing failed: %v", err)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that the pool rejects replacement dynamic fee transactions that don't
|
|
// meet the minimum price bump required.
|
|
func TestTransactionReplacementDynamicFee(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the pricing enforcement with
|
|
pool, key := setupTxPoolWithConfig(eip1559Config)
|
|
defer pool.Stop()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
|
|
|
|
// Keep track of transaction events to ensure all executables get announced
|
|
events := make(chan NewTxsEvent, 32)
|
|
sub := pool.txFeed.Subscribe(events)
|
|
defer sub.Unsubscribe()
|
|
|
|
// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
|
|
gasFeeCap := int64(100)
|
|
feeCapThreshold := (gasFeeCap * (100 + int64(testTxPoolConfig.PriceBump))) / 100
|
|
gasTipCap := int64(60)
|
|
tipThreshold := (gasTipCap * (100 + int64(testTxPoolConfig.PriceBump))) / 100
|
|
|
|
// Run the following identical checks for both the pending and queue pools:
|
|
// 1. Send initial tx => accept
|
|
// 2. Don't bump tip or fee cap => discard
|
|
// 3. Bump both more than min => accept
|
|
// 4. Check events match expected (2 new executable txs during pending, 0 during queue)
|
|
// 5. Send new tx with larger tip and gasFeeCap => accept
|
|
// 6. Bump tip max allowed so it's still underpriced => discard
|
|
// 7. Bump fee cap max allowed so it's still underpriced => discard
|
|
// 8. Bump tip min for acceptance => discard
|
|
// 9. Bump feecap min for acceptance => discard
|
|
// 10. Bump feecap and tip min for acceptance => accept
|
|
// 11. Check events match expected (2 new executable txs during pending, 0 during queue)
|
|
stages := []string{"pending", "queued"}
|
|
for _, stage := range stages {
|
|
// Since state is empty, 0 nonce txs are "executable" and can go
|
|
// into pending immediately. 2 nonce txs are "happed
|
|
nonce := uint64(0)
|
|
if stage == "queued" {
|
|
nonce = 2
|
|
}
|
|
|
|
// 1. Send initial tx => accept
|
|
tx := dynamicFeeTx(nonce, 100000, big.NewInt(2), big.NewInt(1), key)
|
|
if err := pool.addRemoteSync(tx); err != nil {
|
|
t.Fatalf("failed to add original cheap %s transaction: %v", stage, err)
|
|
}
|
|
// 2. Don't bump tip or feecap => discard
|
|
tx = dynamicFeeTx(nonce, 100001, big.NewInt(2), big.NewInt(1), key)
|
|
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original cheap %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
|
|
}
|
|
// 3. Bump both more than min => accept
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(3), big.NewInt(2), key)
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Fatalf("failed to replace original cheap %s transaction: %v", stage, err)
|
|
}
|
|
// 4. Check events match expected (2 new executable txs during pending, 0 during queue)
|
|
count := 2
|
|
if stage == "queued" {
|
|
count = 0
|
|
}
|
|
if err := validateEvents(events, count); err != nil {
|
|
t.Fatalf("cheap %s replacement event firing failed: %v", stage, err)
|
|
}
|
|
// 5. Send new tx with larger tip and feeCap => accept
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(gasFeeCap), big.NewInt(gasTipCap), key)
|
|
if err := pool.addRemoteSync(tx); err != nil {
|
|
t.Fatalf("failed to add original proper %s transaction: %v", stage, err)
|
|
}
|
|
// 6. Bump tip max allowed so it's still underpriced => discard
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(gasFeeCap), big.NewInt(tipThreshold-1), key)
|
|
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
|
|
}
|
|
// 7. Bump fee cap max allowed so it's still underpriced => discard
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold-1), big.NewInt(gasTipCap), key)
|
|
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
|
|
}
|
|
// 8. Bump tip min for acceptance => accept
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(gasFeeCap), big.NewInt(tipThreshold), key)
|
|
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
|
|
}
|
|
// 9. Bump fee cap min for acceptance => accept
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold), big.NewInt(gasTipCap), key)
|
|
if err := pool.AddRemote(tx); err != ErrReplaceUnderpriced {
|
|
t.Fatalf("original proper %s transaction replacement error mismatch: have %v, want %v", stage, err, ErrReplaceUnderpriced)
|
|
}
|
|
// 10. Check events match expected (3 new executable txs during pending, 0 during queue)
|
|
tx = dynamicFeeTx(nonce, 100000, big.NewInt(feeCapThreshold), big.NewInt(tipThreshold), key)
|
|
if err := pool.AddRemote(tx); err != nil {
|
|
t.Fatalf("failed to replace original cheap %s transaction: %v", stage, err)
|
|
}
|
|
// 11. Check events match expected (3 new executable txs during pending, 0 during queue)
|
|
count = 2
|
|
if stage == "queued" {
|
|
count = 0
|
|
}
|
|
if err := validateEvents(events, count); err != nil {
|
|
t.Fatalf("replacement %s event firing failed: %v", stage, err)
|
|
}
|
|
}
|
|
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
}
|
|
|
|
// Tests that local transactions are journaled to disk, but remote transactions
|
|
// get discarded between restarts.
|
|
func TestTransactionJournaling(t *testing.T) { testTransactionJournaling(t, false) }
|
|
func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) }
|
|
|
|
func testTransactionJournaling(t *testing.T, nolocals bool) {
|
|
t.Parallel()
|
|
|
|
// Create a temporary file for the journal
|
|
file, err := os.CreateTemp("", "")
|
|
if err != nil {
|
|
t.Fatalf("failed to create temporary journal: %v", err)
|
|
}
|
|
journal := file.Name()
|
|
defer os.Remove(journal)
|
|
|
|
// Clean up the temporary file, we only need the path for now
|
|
file.Close()
|
|
os.Remove(journal)
|
|
|
|
// Create the original pool to inject transaction into the journal
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
config := testTxPoolConfig
|
|
config.NoLocals = nolocals
|
|
config.Journal = journal
|
|
config.Rejournal = time.Second
|
|
|
|
pool := NewTxPool(config, params.TestChainConfig, blockchain)
|
|
|
|
// Create two test accounts to ensure remotes expire but locals do not
|
|
local, _ := crypto.GenerateKey()
|
|
remote, _ := crypto.GenerateKey()
|
|
|
|
testAddBalance(pool, crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
|
|
testAddBalance(pool, crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
|
|
|
|
// Add three local and a remote transactions and ensure they are queued up
|
|
if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil {
|
|
t.Fatalf("failed to add local transaction: %v", err)
|
|
}
|
|
if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil {
|
|
t.Fatalf("failed to add remote transaction: %v", err)
|
|
}
|
|
pending, queued := pool.Stats()
|
|
if pending != 4 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
|
|
}
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive
|
|
pool.Stop()
|
|
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
|
|
blockchain = &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool = NewTxPool(config, params.TestChainConfig, blockchain)
|
|
|
|
pending, queued = pool.Stats()
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
if nolocals {
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
} else {
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Bump the nonce temporarily and ensure the newly invalidated transaction is removed
|
|
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
|
|
<-pool.requestReset(nil, nil)
|
|
time.Sleep(2 * config.Rejournal)
|
|
pool.Stop()
|
|
|
|
statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
|
|
blockchain = &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
pool = NewTxPool(config, params.TestChainConfig, blockchain)
|
|
|
|
pending, queued = pool.Stats()
|
|
if pending != 0 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
|
|
}
|
|
if nolocals {
|
|
if queued != 0 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
|
|
}
|
|
} else {
|
|
if queued != 1 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
|
|
}
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
pool.Stop()
|
|
}
|
|
|
|
// TestTransactionStatusCheck tests that the pool can correctly retrieve the
|
|
// pending status of individual transactions.
|
|
func TestTransactionStatusCheck(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Create the pool to test the status retrievals with
|
|
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
|
|
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
|
|
|
|
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
|
|
defer pool.Stop()
|
|
|
|
// Create the test accounts to check various transaction statuses with
|
|
keys := make([]*ecdsa.PrivateKey, 3)
|
|
for i := 0; i < len(keys); i++ {
|
|
keys[i], _ = crypto.GenerateKey()
|
|
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
|
|
}
|
|
// Generate and queue a batch of transactions, both pending and queued
|
|
txs := types.Transactions{}
|
|
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only
|
|
txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1]))
|
|
txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only
|
|
|
|
// Import the transaction and ensure they are correctly added
|
|
pool.AddRemotesSync(txs)
|
|
|
|
pending, queued := pool.Stats()
|
|
if pending != 2 {
|
|
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
|
|
}
|
|
if queued != 2 {
|
|
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
|
|
}
|
|
if err := validateTxPoolInternals(pool); err != nil {
|
|
t.Fatalf("pool internal state corrupted: %v", err)
|
|
}
|
|
// Retrieve the status of each transaction and validate them
|
|
hashes := make([]common.Hash, len(txs))
|
|
for i, tx := range txs {
|
|
hashes[i] = tx.Hash()
|
|
}
|
|
hashes = append(hashes, common.Hash{})
|
|
|
|
statuses := pool.Status(hashes)
|
|
expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown}
|
|
|
|
for i := 0; i < len(statuses); i++ {
|
|
if statuses[i] != expect[i] {
|
|
t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i])
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test the transaction slots consumption is computed correctly
|
|
func TestTransactionSlotCount(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
key, _ := crypto.GenerateKey()
|
|
|
|
// Check that an empty transaction consumes a single slot
|
|
smallTx := pricedDataTransaction(0, 0, big.NewInt(0), key, 0)
|
|
if slots := numSlots(smallTx); slots != 1 {
|
|
t.Fatalf("small transactions slot count mismatch: have %d want %d", slots, 1)
|
|
}
|
|
// Check that a large transaction consumes the correct number of slots
|
|
bigTx := pricedDataTransaction(0, 0, big.NewInt(0), key, uint64(10*txSlotSize))
|
|
if slots := numSlots(bigTx); slots != 11 {
|
|
t.Fatalf("big transactions slot count mismatch: have %d want %d", slots, 11)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of validating the contents of the pending queue of the
|
|
// transaction pool.
|
|
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
|
|
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
|
|
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
|
|
|
|
func benchmarkPendingDemotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(i), 100000, key)
|
|
pool.promoteTx(account, tx.Hash(), tx)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.demoteUnexecutables()
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of scheduling the contents of the future queue of the
|
|
// transaction pool.
|
|
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
|
|
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
|
|
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
|
|
|
|
func benchmarkFuturePromotion(b *testing.B, size int) {
|
|
// Add a batch of transactions to a pool one by one
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
for i := 0; i < size; i++ {
|
|
tx := transaction(uint64(1+i), 100000, key)
|
|
pool.enqueueTx(tx.Hash(), tx, false, true)
|
|
}
|
|
// Benchmark the speed of pool validation
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
pool.promoteExecutables(nil)
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of batched transaction insertion.
|
|
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, false) }
|
|
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, false) }
|
|
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, false) }
|
|
|
|
func BenchmarkPoolBatchLocalInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100, true) }
|
|
func BenchmarkPoolBatchLocalInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000, true) }
|
|
func BenchmarkPoolBatchLocalInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, true) }
|
|
|
|
func benchmarkPoolBatchInsert(b *testing.B, size int, local bool) {
|
|
// Generate a batch of transactions to enqueue into the pool
|
|
pool, key := setupTxPool()
|
|
defer pool.Stop()
|
|
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
testAddBalance(pool, account, big.NewInt(1000000))
|
|
|
|
batches := make([]types.Transactions, b.N)
|
|
for i := 0; i < b.N; i++ {
|
|
batches[i] = make(types.Transactions, size)
|
|
for j := 0; j < size; j++ {
|
|
batches[i][j] = transaction(uint64(size*i+j), 100000, key)
|
|
}
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for _, batch := range batches {
|
|
if local {
|
|
pool.AddLocals(batch)
|
|
} else {
|
|
pool.AddRemotes(batch)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkInsertRemoteWithAllLocals(b *testing.B) {
|
|
// Allocate keys for testing
|
|
key, _ := crypto.GenerateKey()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
|
|
remoteKey, _ := crypto.GenerateKey()
|
|
remoteAddr := crypto.PubkeyToAddress(remoteKey.PublicKey)
|
|
|
|
locals := make([]*types.Transaction, 4096+1024) // Occupy all slots
|
|
for i := 0; i < len(locals); i++ {
|
|
locals[i] = transaction(uint64(i), 100000, key)
|
|
}
|
|
remotes := make([]*types.Transaction, 1000)
|
|
for i := 0; i < len(remotes); i++ {
|
|
remotes[i] = pricedTransaction(uint64(i), 100000, big.NewInt(2), remoteKey) // Higher gasprice
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
b.StopTimer()
|
|
pool, _ := setupTxPool()
|
|
testAddBalance(pool, account, big.NewInt(100000000))
|
|
for _, local := range locals {
|
|
pool.AddLocal(local)
|
|
}
|
|
b.StartTimer()
|
|
// Assign a high enough balance for testing
|
|
testAddBalance(pool, remoteAddr, big.NewInt(100000000))
|
|
for i := 0; i < len(remotes); i++ {
|
|
pool.AddRemotes([]*types.Transaction{remotes[i]})
|
|
}
|
|
pool.Stop()
|
|
}
|
|
}
|
|
|
|
// Benchmarks the speed of batch transaction insertion in case of multiple accounts.
|
|
func BenchmarkPoolMultiAccountBatchInsert(b *testing.B) {
|
|
// Generate a batch of transactions to enqueue into the pool
|
|
pool, _ := setupTxPool()
|
|
defer pool.Stop()
|
|
b.ReportAllocs()
|
|
batches := make(types.Transactions, b.N)
|
|
for i := 0; i < b.N; i++ {
|
|
key, _ := crypto.GenerateKey()
|
|
account := crypto.PubkeyToAddress(key.PublicKey)
|
|
pool.currentState.AddBalance(account, big.NewInt(1000000))
|
|
tx := transaction(uint64(0), 100000, key)
|
|
batches[i] = tx
|
|
}
|
|
// Benchmark importing the transactions into the queue
|
|
b.ResetTimer()
|
|
for _, tx := range batches {
|
|
pool.AddRemotesSync([]*types.Transaction{tx})
|
|
}
|
|
}
|