mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2025-01-15 14:58:21 +00:00
c92faee66e
Changes: Simplify nested complexity If an if blocks ends with a return statement then remove the else nesting. Most of the changes has also been reported in golint https://goreportcard.com/report/github.com/ethereum/go-ethereum#golint
609 lines
19 KiB
Go
609 lines
19 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package server
|
|
|
|
import (
|
|
"errors"
|
|
"math"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common/mclock"
|
|
"github.com/ethereum/go-ethereum/les/utils"
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
"github.com/ethereum/go-ethereum/p2p/nodestate"
|
|
)
|
|
|
|
var errBalanceOverflow = errors.New("balance overflow")
|
|
|
|
const maxBalance = math.MaxInt64 // maximum allowed balance value
|
|
|
|
const (
|
|
balanceCallbackUpdate = iota // called when priority drops below the last minimum estimate
|
|
balanceCallbackZero // called when priority drops to zero (positive balance exhausted)
|
|
balanceCallbackCount // total number of balance callbacks
|
|
)
|
|
|
|
// PriceFactors determine the pricing policy (may apply either to positive or
|
|
// negative balances which may have different factors).
|
|
// - TimeFactor is cost unit per nanosecond of connection time
|
|
// - CapacityFactor is cost unit per nanosecond of connection time per 1000000 capacity
|
|
// - RequestFactor is cost unit per request "realCost" unit
|
|
type PriceFactors struct {
|
|
TimeFactor, CapacityFactor, RequestFactor float64
|
|
}
|
|
|
|
// timePrice returns the price of connection per nanosecond at the given capacity
|
|
func (p PriceFactors) timePrice(cap uint64) float64 {
|
|
return p.TimeFactor + float64(cap)*p.CapacityFactor/1000000
|
|
}
|
|
|
|
// NodeBalance keeps track of the positive and negative balances of a connected
|
|
// client and calculates actual and projected future priority values.
|
|
// Implements nodePriority interface.
|
|
type NodeBalance struct {
|
|
bt *BalanceTracker
|
|
lock sync.RWMutex
|
|
node *enode.Node
|
|
connAddress string
|
|
active bool
|
|
priority bool
|
|
capacity uint64
|
|
balance balance
|
|
posFactor, negFactor PriceFactors
|
|
sumReqCost uint64
|
|
lastUpdate, nextUpdate, initTime mclock.AbsTime
|
|
updateEvent mclock.Timer
|
|
// since only a limited and fixed number of callbacks are needed, they are
|
|
// stored in a fixed size array ordered by priority threshold.
|
|
callbacks [balanceCallbackCount]balanceCallback
|
|
// callbackIndex maps balanceCallback constants to callbacks array indexes (-1 if not active)
|
|
callbackIndex [balanceCallbackCount]int
|
|
callbackCount int // number of active callbacks
|
|
}
|
|
|
|
// balance represents a pair of positive and negative balances
|
|
type balance struct {
|
|
pos, neg utils.ExpiredValue
|
|
}
|
|
|
|
// balanceCallback represents a single callback that is activated when client priority
|
|
// reaches the given threshold
|
|
type balanceCallback struct {
|
|
id int
|
|
threshold int64
|
|
callback func()
|
|
}
|
|
|
|
// GetBalance returns the current positive and negative balance.
|
|
func (n *NodeBalance) GetBalance() (uint64, uint64) {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
return n.balance.pos.Value(n.bt.posExp.LogOffset(now)), n.balance.neg.Value(n.bt.negExp.LogOffset(now))
|
|
}
|
|
|
|
// GetRawBalance returns the current positive and negative balance
|
|
// but in the raw(expired value) format.
|
|
func (n *NodeBalance) GetRawBalance() (utils.ExpiredValue, utils.ExpiredValue) {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
return n.balance.pos, n.balance.neg
|
|
}
|
|
|
|
// AddBalance adds the given amount to the positive balance and returns the balance
|
|
// before and after the operation. Exceeding maxBalance results in an error (balance is
|
|
// unchanged) while adding a negative amount higher than the current balance results in
|
|
// zero balance.
|
|
func (n *NodeBalance) AddBalance(amount int64) (uint64, uint64, error) {
|
|
var (
|
|
err error
|
|
old, new uint64
|
|
)
|
|
n.bt.ns.Operation(func() {
|
|
var (
|
|
callbacks []func()
|
|
setPriority bool
|
|
)
|
|
n.bt.updateTotalBalance(n, func() bool {
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
|
|
// Ensure the given amount is valid to apply.
|
|
offset := n.bt.posExp.LogOffset(now)
|
|
old = n.balance.pos.Value(offset)
|
|
if amount > 0 && (amount > maxBalance || old > maxBalance-uint64(amount)) {
|
|
err = errBalanceOverflow
|
|
return false
|
|
}
|
|
|
|
// Update the total positive balance counter.
|
|
n.balance.pos.Add(amount, offset)
|
|
callbacks = n.checkCallbacks(now)
|
|
setPriority = n.checkPriorityStatus()
|
|
new = n.balance.pos.Value(offset)
|
|
n.storeBalance(true, false)
|
|
return true
|
|
})
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
if setPriority {
|
|
n.bt.ns.SetStateSub(n.node, n.bt.PriorityFlag, nodestate.Flags{}, 0)
|
|
}
|
|
n.signalPriorityUpdate()
|
|
})
|
|
if err != nil {
|
|
return old, old, err
|
|
}
|
|
|
|
return old, new, nil
|
|
}
|
|
|
|
// SetBalance sets the positive and negative balance to the given values
|
|
func (n *NodeBalance) SetBalance(pos, neg uint64) error {
|
|
if pos > maxBalance || neg > maxBalance {
|
|
return errBalanceOverflow
|
|
}
|
|
n.bt.ns.Operation(func() {
|
|
var (
|
|
callbacks []func()
|
|
setPriority bool
|
|
)
|
|
n.bt.updateTotalBalance(n, func() bool {
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
|
|
var pb, nb utils.ExpiredValue
|
|
pb.Add(int64(pos), n.bt.posExp.LogOffset(now))
|
|
nb.Add(int64(neg), n.bt.negExp.LogOffset(now))
|
|
n.balance.pos = pb
|
|
n.balance.neg = nb
|
|
callbacks = n.checkCallbacks(now)
|
|
setPriority = n.checkPriorityStatus()
|
|
n.storeBalance(true, true)
|
|
return true
|
|
})
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
if setPriority {
|
|
n.bt.ns.SetStateSub(n.node, n.bt.PriorityFlag, nodestate.Flags{}, 0)
|
|
}
|
|
n.signalPriorityUpdate()
|
|
})
|
|
return nil
|
|
}
|
|
|
|
// RequestServed should be called after serving a request for the given peer
|
|
func (n *NodeBalance) RequestServed(cost uint64) uint64 {
|
|
n.lock.Lock()
|
|
var callbacks []func()
|
|
defer func() {
|
|
n.lock.Unlock()
|
|
if callbacks != nil {
|
|
n.bt.ns.Operation(func() {
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
})
|
|
}
|
|
}()
|
|
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
fcost := float64(cost)
|
|
|
|
posExp := n.bt.posExp.LogOffset(now)
|
|
var check bool
|
|
if !n.balance.pos.IsZero() {
|
|
if n.posFactor.RequestFactor != 0 {
|
|
c := -int64(fcost * n.posFactor.RequestFactor)
|
|
cc := n.balance.pos.Add(c, posExp)
|
|
if c == cc {
|
|
fcost = 0
|
|
} else {
|
|
fcost *= 1 - float64(cc)/float64(c)
|
|
}
|
|
check = true
|
|
} else {
|
|
fcost = 0
|
|
}
|
|
}
|
|
if fcost > 0 {
|
|
if n.negFactor.RequestFactor != 0 {
|
|
n.balance.neg.Add(int64(fcost*n.negFactor.RequestFactor), n.bt.negExp.LogOffset(now))
|
|
check = true
|
|
}
|
|
}
|
|
if check {
|
|
callbacks = n.checkCallbacks(now)
|
|
}
|
|
n.sumReqCost += cost
|
|
return n.balance.pos.Value(posExp)
|
|
}
|
|
|
|
// Priority returns the actual priority based on the current balance
|
|
func (n *NodeBalance) Priority(now mclock.AbsTime, capacity uint64) int64 {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
n.updateBalance(now)
|
|
return n.balanceToPriority(n.balance, capacity)
|
|
}
|
|
|
|
// EstMinPriority gives a lower estimate for the priority at a given time in the future.
|
|
// An average request cost per time is assumed that is twice the average cost per time
|
|
// in the current session.
|
|
// If update is true then a priority callback is added that turns UpdateFlag on and off
|
|
// in case the priority goes below the estimated minimum.
|
|
func (n *NodeBalance) EstMinPriority(at mclock.AbsTime, capacity uint64, update bool) int64 {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
var avgReqCost float64
|
|
dt := time.Duration(n.lastUpdate - n.initTime)
|
|
if dt > time.Second {
|
|
avgReqCost = float64(n.sumReqCost) * 2 / float64(dt)
|
|
}
|
|
pri := n.balanceToPriority(n.reducedBalance(at, capacity, avgReqCost), capacity)
|
|
if update {
|
|
n.addCallback(balanceCallbackUpdate, pri, n.signalPriorityUpdate)
|
|
}
|
|
return pri
|
|
}
|
|
|
|
// PosBalanceMissing calculates the missing amount of positive balance in order to
|
|
// connect at targetCapacity, stay connected for the given amount of time and then
|
|
// still have a priority of targetPriority
|
|
func (n *NodeBalance) PosBalanceMissing(targetPriority int64, targetCapacity uint64, after time.Duration) uint64 {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
now := n.bt.clock.Now()
|
|
if targetPriority < 0 {
|
|
timePrice := n.negFactor.timePrice(targetCapacity)
|
|
timeCost := uint64(float64(after) * timePrice)
|
|
negBalance := n.balance.neg.Value(n.bt.negExp.LogOffset(now))
|
|
if timeCost+negBalance < uint64(-targetPriority) {
|
|
return 0
|
|
}
|
|
if uint64(-targetPriority) > negBalance && timePrice > 1e-100 {
|
|
if negTime := time.Duration(float64(uint64(-targetPriority)-negBalance) / timePrice); negTime < after {
|
|
after -= negTime
|
|
} else {
|
|
after = 0
|
|
}
|
|
}
|
|
targetPriority = 0
|
|
}
|
|
timePrice := n.posFactor.timePrice(targetCapacity)
|
|
posRequired := uint64(float64(targetPriority)*float64(targetCapacity)+float64(after)*timePrice) + 1
|
|
if posRequired >= maxBalance {
|
|
return math.MaxUint64 // target not reachable
|
|
}
|
|
posBalance := n.balance.pos.Value(n.bt.posExp.LogOffset(now))
|
|
if posRequired > posBalance {
|
|
return posRequired - posBalance
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// SetPriceFactors sets the price factors. TimeFactor is the price of a nanosecond of
|
|
// connection while RequestFactor is the price of a request cost unit.
|
|
func (n *NodeBalance) SetPriceFactors(posFactor, negFactor PriceFactors) {
|
|
n.lock.Lock()
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
n.posFactor, n.negFactor = posFactor, negFactor
|
|
callbacks := n.checkCallbacks(now)
|
|
n.lock.Unlock()
|
|
if callbacks != nil {
|
|
n.bt.ns.Operation(func() {
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// GetPriceFactors returns the price factors
|
|
func (n *NodeBalance) GetPriceFactors() (posFactor, negFactor PriceFactors) {
|
|
n.lock.Lock()
|
|
defer n.lock.Unlock()
|
|
|
|
return n.posFactor, n.negFactor
|
|
}
|
|
|
|
// activate starts time/capacity cost deduction.
|
|
func (n *NodeBalance) activate() {
|
|
n.bt.updateTotalBalance(n, func() bool {
|
|
if n.active {
|
|
return false
|
|
}
|
|
n.active = true
|
|
n.lastUpdate = n.bt.clock.Now()
|
|
return true
|
|
})
|
|
}
|
|
|
|
// deactivate stops time/capacity cost deduction and saves the balances in the database
|
|
func (n *NodeBalance) deactivate() {
|
|
n.bt.updateTotalBalance(n, func() bool {
|
|
if !n.active {
|
|
return false
|
|
}
|
|
n.updateBalance(n.bt.clock.Now())
|
|
if n.updateEvent != nil {
|
|
n.updateEvent.Stop()
|
|
n.updateEvent = nil
|
|
}
|
|
n.storeBalance(true, true)
|
|
n.active = false
|
|
return true
|
|
})
|
|
}
|
|
|
|
// updateBalance updates balance based on the time factor
|
|
func (n *NodeBalance) updateBalance(now mclock.AbsTime) {
|
|
if n.active && now > n.lastUpdate {
|
|
n.balance = n.reducedBalance(now, n.capacity, 0)
|
|
n.lastUpdate = now
|
|
}
|
|
}
|
|
|
|
// storeBalance stores the positive and/or negative balance of the node in the database
|
|
func (n *NodeBalance) storeBalance(pos, neg bool) {
|
|
if pos {
|
|
n.bt.storeBalance(n.node.ID().Bytes(), false, n.balance.pos)
|
|
}
|
|
if neg {
|
|
n.bt.storeBalance([]byte(n.connAddress), true, n.balance.neg)
|
|
}
|
|
}
|
|
|
|
// addCallback sets up a one-time callback to be called when priority reaches
|
|
// the threshold. If it has already reached the threshold the callback is called
|
|
// immediately.
|
|
// Note: should be called while n.lock is held
|
|
// Note 2: the callback function runs inside a NodeStateMachine operation
|
|
func (n *NodeBalance) addCallback(id int, threshold int64, callback func()) {
|
|
n.removeCallback(id)
|
|
idx := 0
|
|
for idx < n.callbackCount && threshold > n.callbacks[idx].threshold {
|
|
idx++
|
|
}
|
|
for i := n.callbackCount - 1; i >= idx; i-- {
|
|
n.callbackIndex[n.callbacks[i].id]++
|
|
n.callbacks[i+1] = n.callbacks[i]
|
|
}
|
|
n.callbackCount++
|
|
n.callbackIndex[id] = idx
|
|
n.callbacks[idx] = balanceCallback{id, threshold, callback}
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
n.scheduleCheck(now)
|
|
}
|
|
|
|
// removeCallback removes the given callback and returns true if it was active
|
|
// Note: should be called while n.lock is held
|
|
func (n *NodeBalance) removeCallback(id int) bool {
|
|
idx := n.callbackIndex[id]
|
|
if idx == -1 {
|
|
return false
|
|
}
|
|
n.callbackIndex[id] = -1
|
|
for i := idx; i < n.callbackCount-1; i++ {
|
|
n.callbackIndex[n.callbacks[i+1].id]--
|
|
n.callbacks[i] = n.callbacks[i+1]
|
|
}
|
|
n.callbackCount--
|
|
return true
|
|
}
|
|
|
|
// checkCallbacks checks whether the threshold of any of the active callbacks
|
|
// have been reached and returns triggered callbacks.
|
|
// Note: checkCallbacks assumes that the balance has been recently updated.
|
|
func (n *NodeBalance) checkCallbacks(now mclock.AbsTime) (callbacks []func()) {
|
|
if n.callbackCount == 0 || n.capacity == 0 {
|
|
return
|
|
}
|
|
pri := n.balanceToPriority(n.balance, n.capacity)
|
|
for n.callbackCount != 0 && n.callbacks[n.callbackCount-1].threshold >= pri {
|
|
n.callbackCount--
|
|
n.callbackIndex[n.callbacks[n.callbackCount].id] = -1
|
|
callbacks = append(callbacks, n.callbacks[n.callbackCount].callback)
|
|
}
|
|
n.scheduleCheck(now)
|
|
return
|
|
}
|
|
|
|
// scheduleCheck sets up or updates a scheduled event to ensure that it will be called
|
|
// again just after the next threshold has been reached.
|
|
func (n *NodeBalance) scheduleCheck(now mclock.AbsTime) {
|
|
if n.callbackCount != 0 {
|
|
d, ok := n.timeUntil(n.callbacks[n.callbackCount-1].threshold)
|
|
if !ok {
|
|
n.nextUpdate = 0
|
|
n.updateAfter(0)
|
|
return
|
|
}
|
|
if n.nextUpdate == 0 || n.nextUpdate > now+mclock.AbsTime(d) {
|
|
if d > time.Second {
|
|
// Note: if the scheduled update is not in the very near future then we
|
|
// schedule the update a bit earlier. This way we do need to update a few
|
|
// extra times but don't need to reschedule every time a processed request
|
|
// brings the expected firing time a little bit closer.
|
|
d = ((d - time.Second) * 7 / 8) + time.Second
|
|
}
|
|
n.nextUpdate = now + mclock.AbsTime(d)
|
|
n.updateAfter(d)
|
|
}
|
|
} else {
|
|
n.nextUpdate = 0
|
|
n.updateAfter(0)
|
|
}
|
|
}
|
|
|
|
// updateAfter schedules a balance update and callback check in the future
|
|
func (n *NodeBalance) updateAfter(dt time.Duration) {
|
|
if n.updateEvent == nil || n.updateEvent.Stop() {
|
|
if dt == 0 {
|
|
n.updateEvent = nil
|
|
} else {
|
|
n.updateEvent = n.bt.clock.AfterFunc(dt, func() {
|
|
var callbacks []func()
|
|
n.lock.Lock()
|
|
if n.callbackCount != 0 {
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
callbacks = n.checkCallbacks(now)
|
|
}
|
|
n.lock.Unlock()
|
|
if callbacks != nil {
|
|
n.bt.ns.Operation(func() {
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
})
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// balanceExhausted should be called when the positive balance is exhausted (priority goes to zero/negative)
|
|
// Note: this function should run inside a NodeStateMachine operation
|
|
func (n *NodeBalance) balanceExhausted() {
|
|
n.lock.Lock()
|
|
n.storeBalance(true, false)
|
|
n.priority = false
|
|
n.lock.Unlock()
|
|
n.bt.ns.SetStateSub(n.node, nodestate.Flags{}, n.bt.PriorityFlag, 0)
|
|
}
|
|
|
|
// checkPriorityStatus checks whether the node has gained priority status and sets the priority
|
|
// callback and flag if necessary. It assumes that the balance has been recently updated.
|
|
// Note that the priority flag has to be set by the caller after the mutex has been released.
|
|
func (n *NodeBalance) checkPriorityStatus() bool {
|
|
if !n.priority && !n.balance.pos.IsZero() {
|
|
n.priority = true
|
|
n.addCallback(balanceCallbackZero, 0, func() { n.balanceExhausted() })
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// signalPriorityUpdate signals that the priority fell below the previous minimum estimate
|
|
// Note: this function should run inside a NodeStateMachine operation
|
|
func (n *NodeBalance) signalPriorityUpdate() {
|
|
n.bt.ns.SetStateSub(n.node, n.bt.UpdateFlag, nodestate.Flags{}, 0)
|
|
n.bt.ns.SetStateSub(n.node, nodestate.Flags{}, n.bt.UpdateFlag, 0)
|
|
}
|
|
|
|
// setCapacity updates the capacity value used for priority calculation
|
|
// Note: capacity should never be zero
|
|
// Note 2: this function should run inside a NodeStateMachine operation
|
|
func (n *NodeBalance) setCapacity(capacity uint64) {
|
|
n.lock.Lock()
|
|
now := n.bt.clock.Now()
|
|
n.updateBalance(now)
|
|
n.capacity = capacity
|
|
callbacks := n.checkCallbacks(now)
|
|
n.lock.Unlock()
|
|
for _, cb := range callbacks {
|
|
cb()
|
|
}
|
|
}
|
|
|
|
// balanceToPriority converts a balance to a priority value. Lower priority means
|
|
// first to disconnect. Positive balance translates to positive priority. If positive
|
|
// balance is zero then negative balance translates to a negative priority.
|
|
func (n *NodeBalance) balanceToPriority(b balance, capacity uint64) int64 {
|
|
if !b.pos.IsZero() {
|
|
return int64(b.pos.Value(n.bt.posExp.LogOffset(n.bt.clock.Now())) / capacity)
|
|
}
|
|
return -int64(b.neg.Value(n.bt.negExp.LogOffset(n.bt.clock.Now())))
|
|
}
|
|
|
|
// reducedBalance estimates the reduced balance at a given time in the fututre based
|
|
// on the current balance, the time factor and an estimated average request cost per time ratio
|
|
func (n *NodeBalance) reducedBalance(at mclock.AbsTime, capacity uint64, avgReqCost float64) balance {
|
|
dt := float64(at - n.lastUpdate)
|
|
b := n.balance
|
|
if !b.pos.IsZero() {
|
|
factor := n.posFactor.timePrice(capacity) + n.posFactor.RequestFactor*avgReqCost
|
|
diff := -int64(dt * factor)
|
|
dd := b.pos.Add(diff, n.bt.posExp.LogOffset(at))
|
|
if dd == diff {
|
|
dt = 0
|
|
} else {
|
|
dt += float64(dd) / factor
|
|
}
|
|
}
|
|
if dt > 0 {
|
|
factor := n.negFactor.timePrice(capacity) + n.negFactor.RequestFactor*avgReqCost
|
|
b.neg.Add(int64(dt*factor), n.bt.negExp.LogOffset(at))
|
|
}
|
|
return b
|
|
}
|
|
|
|
// timeUntil calculates the remaining time needed to reach a given priority level
|
|
// assuming that no requests are processed until then. If the given level is never
|
|
// reached then (0, false) is returned.
|
|
// Note: the function assumes that the balance has been recently updated and
|
|
// calculates the time starting from the last update.
|
|
func (n *NodeBalance) timeUntil(priority int64) (time.Duration, bool) {
|
|
now := n.bt.clock.Now()
|
|
var dt float64
|
|
if !n.balance.pos.IsZero() {
|
|
posBalance := n.balance.pos.Value(n.bt.posExp.LogOffset(now))
|
|
timePrice := n.posFactor.timePrice(n.capacity)
|
|
if timePrice < 1e-100 {
|
|
return 0, false
|
|
}
|
|
if priority > 0 {
|
|
newBalance := uint64(priority) * n.capacity
|
|
if newBalance > posBalance {
|
|
return 0, false
|
|
}
|
|
dt = float64(posBalance-newBalance) / timePrice
|
|
return time.Duration(dt), true
|
|
}
|
|
dt = float64(posBalance) / timePrice
|
|
} else {
|
|
if priority > 0 {
|
|
return 0, false
|
|
}
|
|
}
|
|
// if we have a positive balance then dt equals the time needed to get it to zero
|
|
negBalance := n.balance.neg.Value(n.bt.negExp.LogOffset(now))
|
|
timePrice := n.negFactor.timePrice(n.capacity)
|
|
if uint64(-priority) > negBalance {
|
|
if timePrice < 1e-100 {
|
|
return 0, false
|
|
}
|
|
dt += float64(uint64(-priority)-negBalance) / timePrice
|
|
}
|
|
return time.Duration(dt), true
|
|
}
|