go-pulse/les/lespay/server/balance.go
Alex Prut c92faee66e
all: simplify nested complexity and if blocks ending with a return statement (#21854)
Changes:

    Simplify nested complexity
    If an if blocks ends with a return statement then remove the else nesting.

Most of the changes has also been reported in golint https://goreportcard.com/report/github.com/ethereum/go-ethereum#golint
2020-11-25 09:24:50 +01:00

609 lines
19 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package server
import (
"errors"
"math"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/les/utils"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/nodestate"
)
var errBalanceOverflow = errors.New("balance overflow")
const maxBalance = math.MaxInt64 // maximum allowed balance value
const (
balanceCallbackUpdate = iota // called when priority drops below the last minimum estimate
balanceCallbackZero // called when priority drops to zero (positive balance exhausted)
balanceCallbackCount // total number of balance callbacks
)
// PriceFactors determine the pricing policy (may apply either to positive or
// negative balances which may have different factors).
// - TimeFactor is cost unit per nanosecond of connection time
// - CapacityFactor is cost unit per nanosecond of connection time per 1000000 capacity
// - RequestFactor is cost unit per request "realCost" unit
type PriceFactors struct {
TimeFactor, CapacityFactor, RequestFactor float64
}
// timePrice returns the price of connection per nanosecond at the given capacity
func (p PriceFactors) timePrice(cap uint64) float64 {
return p.TimeFactor + float64(cap)*p.CapacityFactor/1000000
}
// NodeBalance keeps track of the positive and negative balances of a connected
// client and calculates actual and projected future priority values.
// Implements nodePriority interface.
type NodeBalance struct {
bt *BalanceTracker
lock sync.RWMutex
node *enode.Node
connAddress string
active bool
priority bool
capacity uint64
balance balance
posFactor, negFactor PriceFactors
sumReqCost uint64
lastUpdate, nextUpdate, initTime mclock.AbsTime
updateEvent mclock.Timer
// since only a limited and fixed number of callbacks are needed, they are
// stored in a fixed size array ordered by priority threshold.
callbacks [balanceCallbackCount]balanceCallback
// callbackIndex maps balanceCallback constants to callbacks array indexes (-1 if not active)
callbackIndex [balanceCallbackCount]int
callbackCount int // number of active callbacks
}
// balance represents a pair of positive and negative balances
type balance struct {
pos, neg utils.ExpiredValue
}
// balanceCallback represents a single callback that is activated when client priority
// reaches the given threshold
type balanceCallback struct {
id int
threshold int64
callback func()
}
// GetBalance returns the current positive and negative balance.
func (n *NodeBalance) GetBalance() (uint64, uint64) {
n.lock.Lock()
defer n.lock.Unlock()
now := n.bt.clock.Now()
n.updateBalance(now)
return n.balance.pos.Value(n.bt.posExp.LogOffset(now)), n.balance.neg.Value(n.bt.negExp.LogOffset(now))
}
// GetRawBalance returns the current positive and negative balance
// but in the raw(expired value) format.
func (n *NodeBalance) GetRawBalance() (utils.ExpiredValue, utils.ExpiredValue) {
n.lock.Lock()
defer n.lock.Unlock()
now := n.bt.clock.Now()
n.updateBalance(now)
return n.balance.pos, n.balance.neg
}
// AddBalance adds the given amount to the positive balance and returns the balance
// before and after the operation. Exceeding maxBalance results in an error (balance is
// unchanged) while adding a negative amount higher than the current balance results in
// zero balance.
func (n *NodeBalance) AddBalance(amount int64) (uint64, uint64, error) {
var (
err error
old, new uint64
)
n.bt.ns.Operation(func() {
var (
callbacks []func()
setPriority bool
)
n.bt.updateTotalBalance(n, func() bool {
now := n.bt.clock.Now()
n.updateBalance(now)
// Ensure the given amount is valid to apply.
offset := n.bt.posExp.LogOffset(now)
old = n.balance.pos.Value(offset)
if amount > 0 && (amount > maxBalance || old > maxBalance-uint64(amount)) {
err = errBalanceOverflow
return false
}
// Update the total positive balance counter.
n.balance.pos.Add(amount, offset)
callbacks = n.checkCallbacks(now)
setPriority = n.checkPriorityStatus()
new = n.balance.pos.Value(offset)
n.storeBalance(true, false)
return true
})
for _, cb := range callbacks {
cb()
}
if setPriority {
n.bt.ns.SetStateSub(n.node, n.bt.PriorityFlag, nodestate.Flags{}, 0)
}
n.signalPriorityUpdate()
})
if err != nil {
return old, old, err
}
return old, new, nil
}
// SetBalance sets the positive and negative balance to the given values
func (n *NodeBalance) SetBalance(pos, neg uint64) error {
if pos > maxBalance || neg > maxBalance {
return errBalanceOverflow
}
n.bt.ns.Operation(func() {
var (
callbacks []func()
setPriority bool
)
n.bt.updateTotalBalance(n, func() bool {
now := n.bt.clock.Now()
n.updateBalance(now)
var pb, nb utils.ExpiredValue
pb.Add(int64(pos), n.bt.posExp.LogOffset(now))
nb.Add(int64(neg), n.bt.negExp.LogOffset(now))
n.balance.pos = pb
n.balance.neg = nb
callbacks = n.checkCallbacks(now)
setPriority = n.checkPriorityStatus()
n.storeBalance(true, true)
return true
})
for _, cb := range callbacks {
cb()
}
if setPriority {
n.bt.ns.SetStateSub(n.node, n.bt.PriorityFlag, nodestate.Flags{}, 0)
}
n.signalPriorityUpdate()
})
return nil
}
// RequestServed should be called after serving a request for the given peer
func (n *NodeBalance) RequestServed(cost uint64) uint64 {
n.lock.Lock()
var callbacks []func()
defer func() {
n.lock.Unlock()
if callbacks != nil {
n.bt.ns.Operation(func() {
for _, cb := range callbacks {
cb()
}
})
}
}()
now := n.bt.clock.Now()
n.updateBalance(now)
fcost := float64(cost)
posExp := n.bt.posExp.LogOffset(now)
var check bool
if !n.balance.pos.IsZero() {
if n.posFactor.RequestFactor != 0 {
c := -int64(fcost * n.posFactor.RequestFactor)
cc := n.balance.pos.Add(c, posExp)
if c == cc {
fcost = 0
} else {
fcost *= 1 - float64(cc)/float64(c)
}
check = true
} else {
fcost = 0
}
}
if fcost > 0 {
if n.negFactor.RequestFactor != 0 {
n.balance.neg.Add(int64(fcost*n.negFactor.RequestFactor), n.bt.negExp.LogOffset(now))
check = true
}
}
if check {
callbacks = n.checkCallbacks(now)
}
n.sumReqCost += cost
return n.balance.pos.Value(posExp)
}
// Priority returns the actual priority based on the current balance
func (n *NodeBalance) Priority(now mclock.AbsTime, capacity uint64) int64 {
n.lock.Lock()
defer n.lock.Unlock()
n.updateBalance(now)
return n.balanceToPriority(n.balance, capacity)
}
// EstMinPriority gives a lower estimate for the priority at a given time in the future.
// An average request cost per time is assumed that is twice the average cost per time
// in the current session.
// If update is true then a priority callback is added that turns UpdateFlag on and off
// in case the priority goes below the estimated minimum.
func (n *NodeBalance) EstMinPriority(at mclock.AbsTime, capacity uint64, update bool) int64 {
n.lock.Lock()
defer n.lock.Unlock()
var avgReqCost float64
dt := time.Duration(n.lastUpdate - n.initTime)
if dt > time.Second {
avgReqCost = float64(n.sumReqCost) * 2 / float64(dt)
}
pri := n.balanceToPriority(n.reducedBalance(at, capacity, avgReqCost), capacity)
if update {
n.addCallback(balanceCallbackUpdate, pri, n.signalPriorityUpdate)
}
return pri
}
// PosBalanceMissing calculates the missing amount of positive balance in order to
// connect at targetCapacity, stay connected for the given amount of time and then
// still have a priority of targetPriority
func (n *NodeBalance) PosBalanceMissing(targetPriority int64, targetCapacity uint64, after time.Duration) uint64 {
n.lock.Lock()
defer n.lock.Unlock()
now := n.bt.clock.Now()
if targetPriority < 0 {
timePrice := n.negFactor.timePrice(targetCapacity)
timeCost := uint64(float64(after) * timePrice)
negBalance := n.balance.neg.Value(n.bt.negExp.LogOffset(now))
if timeCost+negBalance < uint64(-targetPriority) {
return 0
}
if uint64(-targetPriority) > negBalance && timePrice > 1e-100 {
if negTime := time.Duration(float64(uint64(-targetPriority)-negBalance) / timePrice); negTime < after {
after -= negTime
} else {
after = 0
}
}
targetPriority = 0
}
timePrice := n.posFactor.timePrice(targetCapacity)
posRequired := uint64(float64(targetPriority)*float64(targetCapacity)+float64(after)*timePrice) + 1
if posRequired >= maxBalance {
return math.MaxUint64 // target not reachable
}
posBalance := n.balance.pos.Value(n.bt.posExp.LogOffset(now))
if posRequired > posBalance {
return posRequired - posBalance
}
return 0
}
// SetPriceFactors sets the price factors. TimeFactor is the price of a nanosecond of
// connection while RequestFactor is the price of a request cost unit.
func (n *NodeBalance) SetPriceFactors(posFactor, negFactor PriceFactors) {
n.lock.Lock()
now := n.bt.clock.Now()
n.updateBalance(now)
n.posFactor, n.negFactor = posFactor, negFactor
callbacks := n.checkCallbacks(now)
n.lock.Unlock()
if callbacks != nil {
n.bt.ns.Operation(func() {
for _, cb := range callbacks {
cb()
}
})
}
}
// GetPriceFactors returns the price factors
func (n *NodeBalance) GetPriceFactors() (posFactor, negFactor PriceFactors) {
n.lock.Lock()
defer n.lock.Unlock()
return n.posFactor, n.negFactor
}
// activate starts time/capacity cost deduction.
func (n *NodeBalance) activate() {
n.bt.updateTotalBalance(n, func() bool {
if n.active {
return false
}
n.active = true
n.lastUpdate = n.bt.clock.Now()
return true
})
}
// deactivate stops time/capacity cost deduction and saves the balances in the database
func (n *NodeBalance) deactivate() {
n.bt.updateTotalBalance(n, func() bool {
if !n.active {
return false
}
n.updateBalance(n.bt.clock.Now())
if n.updateEvent != nil {
n.updateEvent.Stop()
n.updateEvent = nil
}
n.storeBalance(true, true)
n.active = false
return true
})
}
// updateBalance updates balance based on the time factor
func (n *NodeBalance) updateBalance(now mclock.AbsTime) {
if n.active && now > n.lastUpdate {
n.balance = n.reducedBalance(now, n.capacity, 0)
n.lastUpdate = now
}
}
// storeBalance stores the positive and/or negative balance of the node in the database
func (n *NodeBalance) storeBalance(pos, neg bool) {
if pos {
n.bt.storeBalance(n.node.ID().Bytes(), false, n.balance.pos)
}
if neg {
n.bt.storeBalance([]byte(n.connAddress), true, n.balance.neg)
}
}
// addCallback sets up a one-time callback to be called when priority reaches
// the threshold. If it has already reached the threshold the callback is called
// immediately.
// Note: should be called while n.lock is held
// Note 2: the callback function runs inside a NodeStateMachine operation
func (n *NodeBalance) addCallback(id int, threshold int64, callback func()) {
n.removeCallback(id)
idx := 0
for idx < n.callbackCount && threshold > n.callbacks[idx].threshold {
idx++
}
for i := n.callbackCount - 1; i >= idx; i-- {
n.callbackIndex[n.callbacks[i].id]++
n.callbacks[i+1] = n.callbacks[i]
}
n.callbackCount++
n.callbackIndex[id] = idx
n.callbacks[idx] = balanceCallback{id, threshold, callback}
now := n.bt.clock.Now()
n.updateBalance(now)
n.scheduleCheck(now)
}
// removeCallback removes the given callback and returns true if it was active
// Note: should be called while n.lock is held
func (n *NodeBalance) removeCallback(id int) bool {
idx := n.callbackIndex[id]
if idx == -1 {
return false
}
n.callbackIndex[id] = -1
for i := idx; i < n.callbackCount-1; i++ {
n.callbackIndex[n.callbacks[i+1].id]--
n.callbacks[i] = n.callbacks[i+1]
}
n.callbackCount--
return true
}
// checkCallbacks checks whether the threshold of any of the active callbacks
// have been reached and returns triggered callbacks.
// Note: checkCallbacks assumes that the balance has been recently updated.
func (n *NodeBalance) checkCallbacks(now mclock.AbsTime) (callbacks []func()) {
if n.callbackCount == 0 || n.capacity == 0 {
return
}
pri := n.balanceToPriority(n.balance, n.capacity)
for n.callbackCount != 0 && n.callbacks[n.callbackCount-1].threshold >= pri {
n.callbackCount--
n.callbackIndex[n.callbacks[n.callbackCount].id] = -1
callbacks = append(callbacks, n.callbacks[n.callbackCount].callback)
}
n.scheduleCheck(now)
return
}
// scheduleCheck sets up or updates a scheduled event to ensure that it will be called
// again just after the next threshold has been reached.
func (n *NodeBalance) scheduleCheck(now mclock.AbsTime) {
if n.callbackCount != 0 {
d, ok := n.timeUntil(n.callbacks[n.callbackCount-1].threshold)
if !ok {
n.nextUpdate = 0
n.updateAfter(0)
return
}
if n.nextUpdate == 0 || n.nextUpdate > now+mclock.AbsTime(d) {
if d > time.Second {
// Note: if the scheduled update is not in the very near future then we
// schedule the update a bit earlier. This way we do need to update a few
// extra times but don't need to reschedule every time a processed request
// brings the expected firing time a little bit closer.
d = ((d - time.Second) * 7 / 8) + time.Second
}
n.nextUpdate = now + mclock.AbsTime(d)
n.updateAfter(d)
}
} else {
n.nextUpdate = 0
n.updateAfter(0)
}
}
// updateAfter schedules a balance update and callback check in the future
func (n *NodeBalance) updateAfter(dt time.Duration) {
if n.updateEvent == nil || n.updateEvent.Stop() {
if dt == 0 {
n.updateEvent = nil
} else {
n.updateEvent = n.bt.clock.AfterFunc(dt, func() {
var callbacks []func()
n.lock.Lock()
if n.callbackCount != 0 {
now := n.bt.clock.Now()
n.updateBalance(now)
callbacks = n.checkCallbacks(now)
}
n.lock.Unlock()
if callbacks != nil {
n.bt.ns.Operation(func() {
for _, cb := range callbacks {
cb()
}
})
}
})
}
}
}
// balanceExhausted should be called when the positive balance is exhausted (priority goes to zero/negative)
// Note: this function should run inside a NodeStateMachine operation
func (n *NodeBalance) balanceExhausted() {
n.lock.Lock()
n.storeBalance(true, false)
n.priority = false
n.lock.Unlock()
n.bt.ns.SetStateSub(n.node, nodestate.Flags{}, n.bt.PriorityFlag, 0)
}
// checkPriorityStatus checks whether the node has gained priority status and sets the priority
// callback and flag if necessary. It assumes that the balance has been recently updated.
// Note that the priority flag has to be set by the caller after the mutex has been released.
func (n *NodeBalance) checkPriorityStatus() bool {
if !n.priority && !n.balance.pos.IsZero() {
n.priority = true
n.addCallback(balanceCallbackZero, 0, func() { n.balanceExhausted() })
return true
}
return false
}
// signalPriorityUpdate signals that the priority fell below the previous minimum estimate
// Note: this function should run inside a NodeStateMachine operation
func (n *NodeBalance) signalPriorityUpdate() {
n.bt.ns.SetStateSub(n.node, n.bt.UpdateFlag, nodestate.Flags{}, 0)
n.bt.ns.SetStateSub(n.node, nodestate.Flags{}, n.bt.UpdateFlag, 0)
}
// setCapacity updates the capacity value used for priority calculation
// Note: capacity should never be zero
// Note 2: this function should run inside a NodeStateMachine operation
func (n *NodeBalance) setCapacity(capacity uint64) {
n.lock.Lock()
now := n.bt.clock.Now()
n.updateBalance(now)
n.capacity = capacity
callbacks := n.checkCallbacks(now)
n.lock.Unlock()
for _, cb := range callbacks {
cb()
}
}
// balanceToPriority converts a balance to a priority value. Lower priority means
// first to disconnect. Positive balance translates to positive priority. If positive
// balance is zero then negative balance translates to a negative priority.
func (n *NodeBalance) balanceToPriority(b balance, capacity uint64) int64 {
if !b.pos.IsZero() {
return int64(b.pos.Value(n.bt.posExp.LogOffset(n.bt.clock.Now())) / capacity)
}
return -int64(b.neg.Value(n.bt.negExp.LogOffset(n.bt.clock.Now())))
}
// reducedBalance estimates the reduced balance at a given time in the fututre based
// on the current balance, the time factor and an estimated average request cost per time ratio
func (n *NodeBalance) reducedBalance(at mclock.AbsTime, capacity uint64, avgReqCost float64) balance {
dt := float64(at - n.lastUpdate)
b := n.balance
if !b.pos.IsZero() {
factor := n.posFactor.timePrice(capacity) + n.posFactor.RequestFactor*avgReqCost
diff := -int64(dt * factor)
dd := b.pos.Add(diff, n.bt.posExp.LogOffset(at))
if dd == diff {
dt = 0
} else {
dt += float64(dd) / factor
}
}
if dt > 0 {
factor := n.negFactor.timePrice(capacity) + n.negFactor.RequestFactor*avgReqCost
b.neg.Add(int64(dt*factor), n.bt.negExp.LogOffset(at))
}
return b
}
// timeUntil calculates the remaining time needed to reach a given priority level
// assuming that no requests are processed until then. If the given level is never
// reached then (0, false) is returned.
// Note: the function assumes that the balance has been recently updated and
// calculates the time starting from the last update.
func (n *NodeBalance) timeUntil(priority int64) (time.Duration, bool) {
now := n.bt.clock.Now()
var dt float64
if !n.balance.pos.IsZero() {
posBalance := n.balance.pos.Value(n.bt.posExp.LogOffset(now))
timePrice := n.posFactor.timePrice(n.capacity)
if timePrice < 1e-100 {
return 0, false
}
if priority > 0 {
newBalance := uint64(priority) * n.capacity
if newBalance > posBalance {
return 0, false
}
dt = float64(posBalance-newBalance) / timePrice
return time.Duration(dt), true
}
dt = float64(posBalance) / timePrice
} else {
if priority > 0 {
return 0, false
}
}
// if we have a positive balance then dt equals the time needed to get it to zero
negBalance := n.balance.neg.Value(n.bt.negExp.LogOffset(now))
timePrice := n.negFactor.timePrice(n.capacity)
if uint64(-priority) > negBalance {
if timePrice < 1e-100 {
return 0, false
}
dt += float64(uint64(-priority)-negBalance) / timePrice
}
return time.Duration(dt), true
}