mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2025-01-11 21:20:05 +00:00
289b30715d
This commit converts the dependency management from Godeps to the vendor folder, also switching the tool from godep to trash. Since the upstream tool lacks a few features proposed via a few PRs, until those PRs are merged in (if), use github.com/karalabe/trash. You can update dependencies via trash --update. All dependencies have been updated to their latest version. Parts of the build system are reworked to drop old notions of Godeps and invocation of the go vet command so that it doesn't run against the vendor folder, as that will just blow up during vetting. The conversion drops OpenCL (and hence GPU mining support) from ethash and our codebase. The short reasoning is that there's noone to maintain and having opencl libs in our deps messes up builds as go install ./... tries to build them, failing with unsatisfied link errors for the C OpenCL deps. golang.org/x/net/context is not vendored in. We expect it to be fetched by the user (i.e. using go get). To keep ci.go builds reproducible the package is "vendored" in build/_vendor.
731 lines
16 KiB
ArmAsm
731 lines
16 KiB
ArmAsm
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build !appengine
|
|
// +build gc
|
|
// +build !noasm
|
|
|
|
#include "textflag.h"
|
|
|
|
// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
|
|
// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
|
|
// https://github.com/golang/snappy/issues/29
|
|
//
|
|
// As a workaround, the package was built with a known good assembler, and
|
|
// those instructions were disassembled by "objdump -d" to yield the
|
|
// 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
|
|
// style comments, in AT&T asm syntax. Note that rsp here is a physical
|
|
// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
|
|
// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
|
|
// fine on Go 1.6.
|
|
|
|
// The asm code generally follows the pure Go code in encode_other.go, except
|
|
// where marked with a "!!!".
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// func emitLiteral(dst, lit []byte) int
|
|
//
|
|
// All local variables fit into registers. The register allocation:
|
|
// - AX len(lit)
|
|
// - BX n
|
|
// - DX return value
|
|
// - DI &dst[i]
|
|
// - R10 &lit[0]
|
|
//
|
|
// The 24 bytes of stack space is to call runtime·memmove.
|
|
//
|
|
// The unusual register allocation of local variables, such as R10 for the
|
|
// source pointer, matches the allocation used at the call site in encodeBlock,
|
|
// which makes it easier to manually inline this function.
|
|
TEXT ·emitLiteral(SB), NOSPLIT, $24-56
|
|
MOVQ dst_base+0(FP), DI
|
|
MOVQ lit_base+24(FP), R10
|
|
MOVQ lit_len+32(FP), AX
|
|
MOVQ AX, DX
|
|
MOVL AX, BX
|
|
SUBL $1, BX
|
|
|
|
CMPL BX, $60
|
|
JLT oneByte
|
|
CMPL BX, $256
|
|
JLT twoBytes
|
|
|
|
threeBytes:
|
|
MOVB $0xf4, 0(DI)
|
|
MOVW BX, 1(DI)
|
|
ADDQ $3, DI
|
|
ADDQ $3, DX
|
|
JMP memmove
|
|
|
|
twoBytes:
|
|
MOVB $0xf0, 0(DI)
|
|
MOVB BX, 1(DI)
|
|
ADDQ $2, DI
|
|
ADDQ $2, DX
|
|
JMP memmove
|
|
|
|
oneByte:
|
|
SHLB $2, BX
|
|
MOVB BX, 0(DI)
|
|
ADDQ $1, DI
|
|
ADDQ $1, DX
|
|
|
|
memmove:
|
|
MOVQ DX, ret+48(FP)
|
|
|
|
// copy(dst[i:], lit)
|
|
//
|
|
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
|
|
// DI, R10 and AX as arguments.
|
|
MOVQ DI, 0(SP)
|
|
MOVQ R10, 8(SP)
|
|
MOVQ AX, 16(SP)
|
|
CALL runtime·memmove(SB)
|
|
RET
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// func emitCopy(dst []byte, offset, length int) int
|
|
//
|
|
// All local variables fit into registers. The register allocation:
|
|
// - AX length
|
|
// - SI &dst[0]
|
|
// - DI &dst[i]
|
|
// - R11 offset
|
|
//
|
|
// The unusual register allocation of local variables, such as R11 for the
|
|
// offset, matches the allocation used at the call site in encodeBlock, which
|
|
// makes it easier to manually inline this function.
|
|
TEXT ·emitCopy(SB), NOSPLIT, $0-48
|
|
MOVQ dst_base+0(FP), DI
|
|
MOVQ DI, SI
|
|
MOVQ offset+24(FP), R11
|
|
MOVQ length+32(FP), AX
|
|
|
|
loop0:
|
|
// for length >= 68 { etc }
|
|
CMPL AX, $68
|
|
JLT step1
|
|
|
|
// Emit a length 64 copy, encoded as 3 bytes.
|
|
MOVB $0xfe, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
SUBL $64, AX
|
|
JMP loop0
|
|
|
|
step1:
|
|
// if length > 64 { etc }
|
|
CMPL AX, $64
|
|
JLE step2
|
|
|
|
// Emit a length 60 copy, encoded as 3 bytes.
|
|
MOVB $0xee, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
SUBL $60, AX
|
|
|
|
step2:
|
|
// if length >= 12 || offset >= 2048 { goto step3 }
|
|
CMPL AX, $12
|
|
JGE step3
|
|
CMPL R11, $2048
|
|
JGE step3
|
|
|
|
// Emit the remaining copy, encoded as 2 bytes.
|
|
MOVB R11, 1(DI)
|
|
SHRL $8, R11
|
|
SHLB $5, R11
|
|
SUBB $4, AX
|
|
SHLB $2, AX
|
|
ORB AX, R11
|
|
ORB $1, R11
|
|
MOVB R11, 0(DI)
|
|
ADDQ $2, DI
|
|
|
|
// Return the number of bytes written.
|
|
SUBQ SI, DI
|
|
MOVQ DI, ret+40(FP)
|
|
RET
|
|
|
|
step3:
|
|
// Emit the remaining copy, encoded as 3 bytes.
|
|
SUBL $1, AX
|
|
SHLB $2, AX
|
|
ORB $2, AX
|
|
MOVB AX, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
|
|
// Return the number of bytes written.
|
|
SUBQ SI, DI
|
|
MOVQ DI, ret+40(FP)
|
|
RET
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// func extendMatch(src []byte, i, j int) int
|
|
//
|
|
// All local variables fit into registers. The register allocation:
|
|
// - DX &src[0]
|
|
// - SI &src[j]
|
|
// - R13 &src[len(src) - 8]
|
|
// - R14 &src[len(src)]
|
|
// - R15 &src[i]
|
|
//
|
|
// The unusual register allocation of local variables, such as R15 for a source
|
|
// pointer, matches the allocation used at the call site in encodeBlock, which
|
|
// makes it easier to manually inline this function.
|
|
TEXT ·extendMatch(SB), NOSPLIT, $0-48
|
|
MOVQ src_base+0(FP), DX
|
|
MOVQ src_len+8(FP), R14
|
|
MOVQ i+24(FP), R15
|
|
MOVQ j+32(FP), SI
|
|
ADDQ DX, R14
|
|
ADDQ DX, R15
|
|
ADDQ DX, SI
|
|
MOVQ R14, R13
|
|
SUBQ $8, R13
|
|
|
|
cmp8:
|
|
// As long as we are 8 or more bytes before the end of src, we can load and
|
|
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
|
|
CMPQ SI, R13
|
|
JA cmp1
|
|
MOVQ (R15), AX
|
|
MOVQ (SI), BX
|
|
CMPQ AX, BX
|
|
JNE bsf
|
|
ADDQ $8, R15
|
|
ADDQ $8, SI
|
|
JMP cmp8
|
|
|
|
bsf:
|
|
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
|
|
// the index of the first byte that differs. The BSF instruction finds the
|
|
// least significant 1 bit, the amd64 architecture is little-endian, and
|
|
// the shift by 3 converts a bit index to a byte index.
|
|
XORQ AX, BX
|
|
BSFQ BX, BX
|
|
SHRQ $3, BX
|
|
ADDQ BX, SI
|
|
|
|
// Convert from &src[ret] to ret.
|
|
SUBQ DX, SI
|
|
MOVQ SI, ret+40(FP)
|
|
RET
|
|
|
|
cmp1:
|
|
// In src's tail, compare 1 byte at a time.
|
|
CMPQ SI, R14
|
|
JAE extendMatchEnd
|
|
MOVB (R15), AX
|
|
MOVB (SI), BX
|
|
CMPB AX, BX
|
|
JNE extendMatchEnd
|
|
ADDQ $1, R15
|
|
ADDQ $1, SI
|
|
JMP cmp1
|
|
|
|
extendMatchEnd:
|
|
// Convert from &src[ret] to ret.
|
|
SUBQ DX, SI
|
|
MOVQ SI, ret+40(FP)
|
|
RET
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// func encodeBlock(dst, src []byte) (d int)
|
|
//
|
|
// All local variables fit into registers, other than "var table". The register
|
|
// allocation:
|
|
// - AX . .
|
|
// - BX . .
|
|
// - CX 56 shift (note that amd64 shifts by non-immediates must use CX).
|
|
// - DX 64 &src[0], tableSize
|
|
// - SI 72 &src[s]
|
|
// - DI 80 &dst[d]
|
|
// - R9 88 sLimit
|
|
// - R10 . &src[nextEmit]
|
|
// - R11 96 prevHash, currHash, nextHash, offset
|
|
// - R12 104 &src[base], skip
|
|
// - R13 . &src[nextS], &src[len(src) - 8]
|
|
// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
|
|
// - R15 112 candidate
|
|
//
|
|
// The second column (56, 64, etc) is the stack offset to spill the registers
|
|
// when calling other functions. We could pack this slightly tighter, but it's
|
|
// simpler to have a dedicated spill map independent of the function called.
|
|
//
|
|
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
|
|
// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
|
|
// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
|
|
TEXT ·encodeBlock(SB), 0, $32888-56
|
|
MOVQ dst_base+0(FP), DI
|
|
MOVQ src_base+24(FP), SI
|
|
MOVQ src_len+32(FP), R14
|
|
|
|
// shift, tableSize := uint32(32-8), 1<<8
|
|
MOVQ $24, CX
|
|
MOVQ $256, DX
|
|
|
|
calcShift:
|
|
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
|
|
// shift--
|
|
// }
|
|
CMPQ DX, $16384
|
|
JGE varTable
|
|
CMPQ DX, R14
|
|
JGE varTable
|
|
SUBQ $1, CX
|
|
SHLQ $1, DX
|
|
JMP calcShift
|
|
|
|
varTable:
|
|
// var table [maxTableSize]uint16
|
|
//
|
|
// In the asm code, unlike the Go code, we can zero-initialize only the
|
|
// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
|
|
// writes 16 bytes, so we can do only tableSize/8 writes instead of the
|
|
// 2048 writes that would zero-initialize all of table's 32768 bytes.
|
|
SHRQ $3, DX
|
|
LEAQ table-32768(SP), BX
|
|
PXOR X0, X0
|
|
|
|
memclr:
|
|
MOVOU X0, 0(BX)
|
|
ADDQ $16, BX
|
|
SUBQ $1, DX
|
|
JNZ memclr
|
|
|
|
// !!! DX = &src[0]
|
|
MOVQ SI, DX
|
|
|
|
// sLimit := len(src) - inputMargin
|
|
MOVQ R14, R9
|
|
SUBQ $15, R9
|
|
|
|
// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
|
|
// change for the rest of the function.
|
|
MOVQ CX, 56(SP)
|
|
MOVQ DX, 64(SP)
|
|
MOVQ R9, 88(SP)
|
|
|
|
// nextEmit := 0
|
|
MOVQ DX, R10
|
|
|
|
// s := 1
|
|
ADDQ $1, SI
|
|
|
|
// nextHash := hash(load32(src, s), shift)
|
|
MOVL 0(SI), R11
|
|
IMULL $0x1e35a7bd, R11
|
|
SHRL CX, R11
|
|
|
|
outer:
|
|
// for { etc }
|
|
|
|
// skip := 32
|
|
MOVQ $32, R12
|
|
|
|
// nextS := s
|
|
MOVQ SI, R13
|
|
|
|
// candidate := 0
|
|
MOVQ $0, R15
|
|
|
|
inner0:
|
|
// for { etc }
|
|
|
|
// s := nextS
|
|
MOVQ R13, SI
|
|
|
|
// bytesBetweenHashLookups := skip >> 5
|
|
MOVQ R12, R14
|
|
SHRQ $5, R14
|
|
|
|
// nextS = s + bytesBetweenHashLookups
|
|
ADDQ R14, R13
|
|
|
|
// skip += bytesBetweenHashLookups
|
|
ADDQ R14, R12
|
|
|
|
// if nextS > sLimit { goto emitRemainder }
|
|
MOVQ R13, AX
|
|
SUBQ DX, AX
|
|
CMPQ AX, R9
|
|
JA emitRemainder
|
|
|
|
// candidate = int(table[nextHash])
|
|
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
|
|
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
|
|
BYTE $0x4e
|
|
BYTE $0x0f
|
|
BYTE $0xb7
|
|
BYTE $0x7c
|
|
BYTE $0x5c
|
|
BYTE $0x78
|
|
|
|
// table[nextHash] = uint16(s)
|
|
MOVQ SI, AX
|
|
SUBQ DX, AX
|
|
|
|
// XXX: MOVW AX, table-32768(SP)(R11*2)
|
|
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
|
|
BYTE $0x66
|
|
BYTE $0x42
|
|
BYTE $0x89
|
|
BYTE $0x44
|
|
BYTE $0x5c
|
|
BYTE $0x78
|
|
|
|
// nextHash = hash(load32(src, nextS), shift)
|
|
MOVL 0(R13), R11
|
|
IMULL $0x1e35a7bd, R11
|
|
SHRL CX, R11
|
|
|
|
// if load32(src, s) != load32(src, candidate) { continue } break
|
|
MOVL 0(SI), AX
|
|
MOVL (DX)(R15*1), BX
|
|
CMPL AX, BX
|
|
JNE inner0
|
|
|
|
fourByteMatch:
|
|
// As per the encode_other.go code:
|
|
//
|
|
// A 4-byte match has been found. We'll later see etc.
|
|
|
|
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
|
|
// on inputMargin in encode.go.
|
|
MOVQ SI, AX
|
|
SUBQ R10, AX
|
|
CMPQ AX, $16
|
|
JLE emitLiteralFastPath
|
|
|
|
// ----------------------------------------
|
|
// Begin inline of the emitLiteral call.
|
|
//
|
|
// d += emitLiteral(dst[d:], src[nextEmit:s])
|
|
|
|
MOVL AX, BX
|
|
SUBL $1, BX
|
|
|
|
CMPL BX, $60
|
|
JLT inlineEmitLiteralOneByte
|
|
CMPL BX, $256
|
|
JLT inlineEmitLiteralTwoBytes
|
|
|
|
inlineEmitLiteralThreeBytes:
|
|
MOVB $0xf4, 0(DI)
|
|
MOVW BX, 1(DI)
|
|
ADDQ $3, DI
|
|
JMP inlineEmitLiteralMemmove
|
|
|
|
inlineEmitLiteralTwoBytes:
|
|
MOVB $0xf0, 0(DI)
|
|
MOVB BX, 1(DI)
|
|
ADDQ $2, DI
|
|
JMP inlineEmitLiteralMemmove
|
|
|
|
inlineEmitLiteralOneByte:
|
|
SHLB $2, BX
|
|
MOVB BX, 0(DI)
|
|
ADDQ $1, DI
|
|
|
|
inlineEmitLiteralMemmove:
|
|
// Spill local variables (registers) onto the stack; call; unspill.
|
|
//
|
|
// copy(dst[i:], lit)
|
|
//
|
|
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
|
|
// DI, R10 and AX as arguments.
|
|
MOVQ DI, 0(SP)
|
|
MOVQ R10, 8(SP)
|
|
MOVQ AX, 16(SP)
|
|
ADDQ AX, DI // Finish the "d +=" part of "d += emitLiteral(etc)".
|
|
MOVQ SI, 72(SP)
|
|
MOVQ DI, 80(SP)
|
|
MOVQ R15, 112(SP)
|
|
CALL runtime·memmove(SB)
|
|
MOVQ 56(SP), CX
|
|
MOVQ 64(SP), DX
|
|
MOVQ 72(SP), SI
|
|
MOVQ 80(SP), DI
|
|
MOVQ 88(SP), R9
|
|
MOVQ 112(SP), R15
|
|
JMP inner1
|
|
|
|
inlineEmitLiteralEnd:
|
|
// End inline of the emitLiteral call.
|
|
// ----------------------------------------
|
|
|
|
emitLiteralFastPath:
|
|
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
|
|
MOVB AX, BX
|
|
SUBB $1, BX
|
|
SHLB $2, BX
|
|
MOVB BX, (DI)
|
|
ADDQ $1, DI
|
|
|
|
// !!! Implement the copy from lit to dst as a 16-byte load and store.
|
|
// (Encode's documentation says that dst and src must not overlap.)
|
|
//
|
|
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
|
|
// OK. Subsequent iterations will fix up the overrun.
|
|
//
|
|
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
|
|
// 16-byte loads and stores. This technique probably wouldn't be as
|
|
// effective on architectures that are fussier about alignment.
|
|
MOVOU 0(R10), X0
|
|
MOVOU X0, 0(DI)
|
|
ADDQ AX, DI
|
|
|
|
inner1:
|
|
// for { etc }
|
|
|
|
// base := s
|
|
MOVQ SI, R12
|
|
|
|
// !!! offset := base - candidate
|
|
MOVQ R12, R11
|
|
SUBQ R15, R11
|
|
SUBQ DX, R11
|
|
|
|
// ----------------------------------------
|
|
// Begin inline of the extendMatch call.
|
|
//
|
|
// s = extendMatch(src, candidate+4, s+4)
|
|
|
|
// !!! R14 = &src[len(src)]
|
|
MOVQ src_len+32(FP), R14
|
|
ADDQ DX, R14
|
|
|
|
// !!! R13 = &src[len(src) - 8]
|
|
MOVQ R14, R13
|
|
SUBQ $8, R13
|
|
|
|
// !!! R15 = &src[candidate + 4]
|
|
ADDQ $4, R15
|
|
ADDQ DX, R15
|
|
|
|
// !!! s += 4
|
|
ADDQ $4, SI
|
|
|
|
inlineExtendMatchCmp8:
|
|
// As long as we are 8 or more bytes before the end of src, we can load and
|
|
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
|
|
CMPQ SI, R13
|
|
JA inlineExtendMatchCmp1
|
|
MOVQ (R15), AX
|
|
MOVQ (SI), BX
|
|
CMPQ AX, BX
|
|
JNE inlineExtendMatchBSF
|
|
ADDQ $8, R15
|
|
ADDQ $8, SI
|
|
JMP inlineExtendMatchCmp8
|
|
|
|
inlineExtendMatchBSF:
|
|
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
|
|
// the index of the first byte that differs. The BSF instruction finds the
|
|
// least significant 1 bit, the amd64 architecture is little-endian, and
|
|
// the shift by 3 converts a bit index to a byte index.
|
|
XORQ AX, BX
|
|
BSFQ BX, BX
|
|
SHRQ $3, BX
|
|
ADDQ BX, SI
|
|
JMP inlineExtendMatchEnd
|
|
|
|
inlineExtendMatchCmp1:
|
|
// In src's tail, compare 1 byte at a time.
|
|
CMPQ SI, R14
|
|
JAE inlineExtendMatchEnd
|
|
MOVB (R15), AX
|
|
MOVB (SI), BX
|
|
CMPB AX, BX
|
|
JNE inlineExtendMatchEnd
|
|
ADDQ $1, R15
|
|
ADDQ $1, SI
|
|
JMP inlineExtendMatchCmp1
|
|
|
|
inlineExtendMatchEnd:
|
|
// End inline of the extendMatch call.
|
|
// ----------------------------------------
|
|
|
|
// ----------------------------------------
|
|
// Begin inline of the emitCopy call.
|
|
//
|
|
// d += emitCopy(dst[d:], base-candidate, s-base)
|
|
|
|
// !!! length := s - base
|
|
MOVQ SI, AX
|
|
SUBQ R12, AX
|
|
|
|
inlineEmitCopyLoop0:
|
|
// for length >= 68 { etc }
|
|
CMPL AX, $68
|
|
JLT inlineEmitCopyStep1
|
|
|
|
// Emit a length 64 copy, encoded as 3 bytes.
|
|
MOVB $0xfe, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
SUBL $64, AX
|
|
JMP inlineEmitCopyLoop0
|
|
|
|
inlineEmitCopyStep1:
|
|
// if length > 64 { etc }
|
|
CMPL AX, $64
|
|
JLE inlineEmitCopyStep2
|
|
|
|
// Emit a length 60 copy, encoded as 3 bytes.
|
|
MOVB $0xee, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
SUBL $60, AX
|
|
|
|
inlineEmitCopyStep2:
|
|
// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
|
|
CMPL AX, $12
|
|
JGE inlineEmitCopyStep3
|
|
CMPL R11, $2048
|
|
JGE inlineEmitCopyStep3
|
|
|
|
// Emit the remaining copy, encoded as 2 bytes.
|
|
MOVB R11, 1(DI)
|
|
SHRL $8, R11
|
|
SHLB $5, R11
|
|
SUBB $4, AX
|
|
SHLB $2, AX
|
|
ORB AX, R11
|
|
ORB $1, R11
|
|
MOVB R11, 0(DI)
|
|
ADDQ $2, DI
|
|
JMP inlineEmitCopyEnd
|
|
|
|
inlineEmitCopyStep3:
|
|
// Emit the remaining copy, encoded as 3 bytes.
|
|
SUBL $1, AX
|
|
SHLB $2, AX
|
|
ORB $2, AX
|
|
MOVB AX, 0(DI)
|
|
MOVW R11, 1(DI)
|
|
ADDQ $3, DI
|
|
|
|
inlineEmitCopyEnd:
|
|
// End inline of the emitCopy call.
|
|
// ----------------------------------------
|
|
|
|
// nextEmit = s
|
|
MOVQ SI, R10
|
|
|
|
// if s >= sLimit { goto emitRemainder }
|
|
MOVQ SI, AX
|
|
SUBQ DX, AX
|
|
CMPQ AX, R9
|
|
JAE emitRemainder
|
|
|
|
// As per the encode_other.go code:
|
|
//
|
|
// We could immediately etc.
|
|
|
|
// x := load64(src, s-1)
|
|
MOVQ -1(SI), R14
|
|
|
|
// prevHash := hash(uint32(x>>0), shift)
|
|
MOVL R14, R11
|
|
IMULL $0x1e35a7bd, R11
|
|
SHRL CX, R11
|
|
|
|
// table[prevHash] = uint16(s-1)
|
|
MOVQ SI, AX
|
|
SUBQ DX, AX
|
|
SUBQ $1, AX
|
|
|
|
// XXX: MOVW AX, table-32768(SP)(R11*2)
|
|
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
|
|
BYTE $0x66
|
|
BYTE $0x42
|
|
BYTE $0x89
|
|
BYTE $0x44
|
|
BYTE $0x5c
|
|
BYTE $0x78
|
|
|
|
// currHash := hash(uint32(x>>8), shift)
|
|
SHRQ $8, R14
|
|
MOVL R14, R11
|
|
IMULL $0x1e35a7bd, R11
|
|
SHRL CX, R11
|
|
|
|
// candidate = int(table[currHash])
|
|
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
|
|
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
|
|
BYTE $0x4e
|
|
BYTE $0x0f
|
|
BYTE $0xb7
|
|
BYTE $0x7c
|
|
BYTE $0x5c
|
|
BYTE $0x78
|
|
|
|
// table[currHash] = uint16(s)
|
|
ADDQ $1, AX
|
|
|
|
// XXX: MOVW AX, table-32768(SP)(R11*2)
|
|
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
|
|
BYTE $0x66
|
|
BYTE $0x42
|
|
BYTE $0x89
|
|
BYTE $0x44
|
|
BYTE $0x5c
|
|
BYTE $0x78
|
|
|
|
// if uint32(x>>8) == load32(src, candidate) { continue }
|
|
MOVL (DX)(R15*1), BX
|
|
CMPL R14, BX
|
|
JEQ inner1
|
|
|
|
// nextHash = hash(uint32(x>>16), shift)
|
|
SHRQ $8, R14
|
|
MOVL R14, R11
|
|
IMULL $0x1e35a7bd, R11
|
|
SHRL CX, R11
|
|
|
|
// s++
|
|
ADDQ $1, SI
|
|
|
|
// break out of the inner1 for loop, i.e. continue the outer loop.
|
|
JMP outer
|
|
|
|
emitRemainder:
|
|
// if nextEmit < len(src) { etc }
|
|
MOVQ src_len+32(FP), AX
|
|
ADDQ DX, AX
|
|
CMPQ R10, AX
|
|
JEQ encodeBlockEnd
|
|
|
|
// d += emitLiteral(dst[d:], src[nextEmit:])
|
|
//
|
|
// Push args.
|
|
MOVQ DI, 0(SP)
|
|
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
|
|
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
|
|
MOVQ R10, 24(SP)
|
|
SUBQ R10, AX
|
|
MOVQ AX, 32(SP)
|
|
MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
|
|
|
|
// Spill local variables (registers) onto the stack; call; unspill.
|
|
MOVQ DI, 80(SP)
|
|
CALL ·emitLiteral(SB)
|
|
MOVQ 80(SP), DI
|
|
|
|
// Finish the "d +=" part of "d += emitLiteral(etc)".
|
|
ADDQ 48(SP), DI
|
|
|
|
encodeBlockEnd:
|
|
MOVQ dst_base+0(FP), AX
|
|
SUBQ AX, DI
|
|
MOVQ DI, d+48(FP)
|
|
RET
|