go-pulse/trie/sync_test.go

586 lines
19 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"fmt"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
)
// makeTestTrie create a sample test trie to test node-wise reconstruction.
func makeTestTrie() (*Database, *StateTrie, map[string][]byte) {
// Create an empty trie
triedb := NewDatabase(rawdb.NewMemoryDatabase())
trie, _ := NewStateTrie(TrieID(common.Hash{}), triedb)
// Fill it with some arbitrary data
content := make(map[string][]byte)
for i := byte(0); i < 255; i++ {
// Map the same data under multiple keys
key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i}
content[string(key)] = val
trie.Update(key, val)
key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i}
content[string(key)] = val
trie.Update(key, val)
// Add some other data to inflate the trie
for j := byte(3); j < 13; j++ {
key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i}
content[string(key)] = val
trie.Update(key, val)
}
}
root, nodes := trie.Commit(false)
if err := triedb.Update(NewWithNodeSet(nodes)); err != nil {
panic(fmt.Errorf("failed to commit db %v", err))
}
// Re-create the trie based on the new state
trie, _ = NewStateTrie(TrieID(root), triedb)
return triedb, trie, content
}
// checkTrieContents cross references a reconstructed trie with an expected data
// content map.
func checkTrieContents(t *testing.T, db *Database, root []byte, content map[string][]byte) {
// Check root availability and trie contents
trie, err := NewStateTrie(TrieID(common.BytesToHash(root)), db)
if err != nil {
t.Fatalf("failed to create trie at %x: %v", root, err)
}
if err := checkTrieConsistency(db, common.BytesToHash(root)); err != nil {
t.Fatalf("inconsistent trie at %x: %v", root, err)
}
for key, val := range content {
if have := trie.Get([]byte(key)); !bytes.Equal(have, val) {
t.Errorf("entry %x: content mismatch: have %x, want %x", key, have, val)
}
}
}
// checkTrieConsistency checks that all nodes in a trie are indeed present.
func checkTrieConsistency(db *Database, root common.Hash) error {
// Create and iterate a trie rooted in a subnode
trie, err := NewStateTrie(TrieID(root), db)
if err != nil {
return nil // Consider a non existent state consistent
}
it := trie.NodeIterator(nil)
for it.Next(true) {
}
return it.Error()
}
// trieElement represents the element in the state trie(bytecode or trie node).
type trieElement struct {
path string
hash common.Hash
syncPath SyncPath
}
// Tests that an empty trie is not scheduled for syncing.
func TestEmptySync(t *testing.T) {
dbA := NewDatabase(rawdb.NewMemoryDatabase())
dbB := NewDatabase(rawdb.NewMemoryDatabase())
emptyA, _ := New(TrieID(common.Hash{}), dbA)
emptyB, _ := New(TrieID(emptyRoot), dbB)
for i, trie := range []*Trie{emptyA, emptyB} {
sync := NewSync(trie.Hash(), memorydb.New(), nil, []*Database{dbA, dbB}[i].Scheme())
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes)
}
}
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeSyncIndividual(t *testing.T) { testIterativeSync(t, 1, false) }
func TestIterativeSyncBatched(t *testing.T) { testIterativeSync(t, 100, false) }
func TestIterativeSyncIndividualByPath(t *testing.T) { testIterativeSync(t, 1, true) }
func TestIterativeSyncBatchedByPath(t *testing.T) { testIterativeSync(t, 100, true) }
func testIterativeSync(t *testing.T, count int, bypath bool) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(count)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
if !bypath {
for i, element := range elements {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
} else {
for i, element := range elements {
data, _, err := srcTrie.TryGetNode(element.syncPath[len(element.syncPath)-1])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", element.path, err)
}
results[i] = NodeSyncResult{element.path, data}
}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(count)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedSync(t *testing.T) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(10000)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
for len(elements) > 0 {
// Sync only half of the scheduled nodes
results := make([]NodeSyncResult, len(elements)/2+1)
for i, element := range elements[:len(results)] {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(10000)
elements = elements[len(results):]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomSyncIndividual(t *testing.T) { testIterativeRandomSync(t, 1) }
func TestIterativeRandomSyncBatched(t *testing.T) { testIterativeRandomSync(t, 100) }
func testIterativeRandomSync(t *testing.T, count int) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(count)
queue := make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
}
}
for len(queue) > 0 {
// Fetch all the queued nodes in a random order
results := make([]NodeSyncResult, 0, len(queue))
for path, element := range queue {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results = append(results, NodeSyncResult{path, data})
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(count)
queue = make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedSync(t *testing.T) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(10000)
queue := make(map[string]trieElement)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
for len(queue) > 0 {
// Sync only half of the scheduled nodes, even those in random order
results := make([]NodeSyncResult, 0, len(queue)/2+1)
for path, element := range queue {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results = append(results, NodeSyncResult{path, data})
if len(results) >= cap(results) {
break
}
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
delete(queue, result.Path)
}
paths, nodes, _ = sched.Missing(10000)
for i, path := range paths {
queue[path] = trieElement{
path: path,
hash: nodes[i],
syncPath: NewSyncPath([]byte(path)),
}
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
}
// Tests that a trie sync will not request nodes multiple times, even if they
// have such references.
func TestDuplicateAvoidanceSync(t *testing.T) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
paths, nodes, _ := sched.Missing(0)
var elements []trieElement
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
requested := make(map[common.Hash]struct{})
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
if _, ok := requested[element.hash]; ok {
t.Errorf("hash %x already requested once", element.hash)
}
requested[element.hash] = struct{}{}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(0)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
}
// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteSync(t *testing.T) {
// Create a random trie to copy
srcDb, srcTrie, _ := makeTestTrie()
// Create a destination trie and sync with the scheduler
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
var (
added []common.Hash
elements []trieElement
root = srcTrie.Hash()
)
paths, nodes, _ := sched.Missing(1)
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
for len(elements) > 0 {
// Fetch a batch of trie nodes
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
// Process each of the trie nodes
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
for _, result := range results {
hash := crypto.Keccak256Hash(result.Data)
if hash != root {
added = append(added, hash)
}
// Check that all known sub-tries in the synced trie are complete
if err := checkTrieConsistency(triedb, hash); err != nil {
t.Fatalf("trie inconsistent: %v", err)
}
}
// Fetch the next batch to retrieve
paths, nodes, _ = sched.Missing(1)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
}
}
// Sanity check that removing any node from the database is detected
for _, hash := range added {
value, _ := diskdb.Get(hash.Bytes())
diskdb.Delete(hash.Bytes())
if err := checkTrieConsistency(triedb, root); err == nil {
t.Fatalf("trie inconsistency not caught, missing: %x", hash)
}
diskdb.Put(hash.Bytes(), value)
}
}
// Tests that trie nodes get scheduled lexicographically when having the same
// depth.
func TestSyncOrdering(t *testing.T) {
// Create a random trie to copy
srcDb, srcTrie, srcData := makeTestTrie()
// Create a destination trie and sync with the scheduler, tracking the requests
diskdb := rawdb.NewMemoryDatabase()
triedb := NewDatabase(diskdb)
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
// The code requests are ignored here since there is no code
// at the testing trie.
var (
reqs []SyncPath
elements []trieElement
)
paths, nodes, _ := sched.Missing(1)
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
}
for len(elements) > 0 {
results := make([]NodeSyncResult, len(elements))
for i, element := range elements {
data, err := srcDb.Node(element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
}
results[i] = NodeSyncResult{element.path, data}
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
batch := diskdb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, _ = sched.Missing(1)
elements = elements[:0]
for i := 0; i < len(paths); i++ {
elements = append(elements, trieElement{
path: paths[i],
hash: nodes[i],
syncPath: NewSyncPath([]byte(paths[i])),
})
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
}
}
// Cross check that the two tries are in sync
checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData)
// Check that the trie nodes have been requested path-ordered
for i := 0; i < len(reqs)-1; i++ {
if len(reqs[i]) > 1 || len(reqs[i+1]) > 1 {
// In the case of the trie tests, there's no storage so the tuples
// must always be single items. 2-tuples should be tested in state.
t.Errorf("Invalid request tuples: len(%v) or len(%v) > 1", reqs[i], reqs[i+1])
}
if bytes.Compare(compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) > 0 {
t.Errorf("Invalid request order: %v before %v", compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0]))
}
}
}