go-pulse/ethchain/vm.go

438 lines
10 KiB
Go

package ethchain
import (
"bytes"
"fmt"
"github.com/ethereum/eth-go/ethutil"
"github.com/obscuren/secp256k1-go"
"log"
"math"
"math/big"
)
type Vm struct {
txPool *TxPool
// Stack for processing contracts
stack *Stack
// non-persistent key/value memory storage
mem map[string]*big.Int
vars RuntimeVars
}
type RuntimeVars struct {
address []byte
blockNumber uint64
sender []byte
prevHash []byte
coinbase []byte
time int64
diff *big.Int
txValue *big.Int
txData []string
}
func (vm *Vm) Process(contract *Contract, state *State, vars RuntimeVars) {
vm.mem = make(map[string]*big.Int)
vm.stack = NewStack()
addr := vars.address // tx.Hash()[12:]
// Instruction pointer
pc := 0
if contract == nil {
fmt.Println("Contract not found")
return
}
Pow256 := ethutil.BigPow(2, 256)
if ethutil.Config.Debug {
fmt.Printf("# op\n")
}
stepcount := 0
totalFee := new(big.Int)
out:
for {
stepcount++
// The base big int for all calculations. Use this for any results.
base := new(big.Int)
val := contract.GetMem(pc)
//fmt.Printf("%x = %d, %v %x\n", r, len(r), v, nb)
op := OpCode(val.Uint())
var fee *big.Int = new(big.Int)
var fee2 *big.Int = new(big.Int)
if stepcount > 16 {
fee.Add(fee, StepFee)
}
// Calculate the fees
switch op {
case oSSTORE:
y, x := vm.stack.Peekn()
val := contract.Addr(ethutil.BigToBytes(x, 256))
if val.IsEmpty() && len(y.Bytes()) > 0 {
fee2.Add(DataFee, StoreFee)
} else {
fee2.Sub(DataFee, StoreFee)
}
case oSLOAD:
fee.Add(fee, StoreFee)
case oEXTRO, oBALANCE:
fee.Add(fee, ExtroFee)
case oSHA256, oRIPEMD160, oECMUL, oECADD, oECSIGN, oECRECOVER, oECVALID:
fee.Add(fee, CryptoFee)
case oMKTX:
fee.Add(fee, ContractFee)
}
tf := new(big.Int).Add(fee, fee2)
if contract.Amount.Cmp(tf) < 0 {
fmt.Println("Contract fee", ContractFee)
fmt.Println("Insufficient fees to continue running the contract", tf, contract.Amount)
break
}
// Add the fee to the total fee. It's subtracted when we're done looping
totalFee.Add(totalFee, tf)
if ethutil.Config.Debug {
fmt.Printf("%-3d %-4s", pc, op.String())
}
switch op {
case oSTOP:
fmt.Println("")
break out
case oADD:
x, y := vm.stack.Popn()
// (x + y) % 2 ** 256
base.Add(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base)
case oSUB:
x, y := vm.stack.Popn()
// (x - y) % 2 ** 256
base.Sub(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base)
case oMUL:
x, y := vm.stack.Popn()
// (x * y) % 2 ** 256
base.Mul(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base)
case oDIV:
x, y := vm.stack.Popn()
// floor(x / y)
base.Div(x, y)
// Pop result back on the stack
vm.stack.Push(base)
case oSDIV:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Div(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
vm.stack.Push(z)
case oMOD:
x, y := vm.stack.Popn()
base.Mod(x, y)
vm.stack.Push(base)
case oSMOD:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Mod(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
vm.stack.Push(z)
case oEXP:
x, y := vm.stack.Popn()
base.Exp(x, y, Pow256)
vm.stack.Push(base)
case oNEG:
base.Sub(Pow256, vm.stack.Pop())
vm.stack.Push(base)
case oLT:
x, y := vm.stack.Popn()
// x < y
if x.Cmp(y) < 0 {
vm.stack.Push(ethutil.BigTrue)
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oLE:
x, y := vm.stack.Popn()
// x <= y
if x.Cmp(y) < 1 {
vm.stack.Push(ethutil.BigTrue)
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oGT:
x, y := vm.stack.Popn()
// x > y
if x.Cmp(y) > 0 {
vm.stack.Push(ethutil.BigTrue)
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oGE:
x, y := vm.stack.Popn()
// x >= y
if x.Cmp(y) > -1 {
vm.stack.Push(ethutil.BigTrue)
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oNOT:
x, y := vm.stack.Popn()
// x != y
if x.Cmp(y) != 0 {
vm.stack.Push(ethutil.BigTrue)
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oMYADDRESS:
vm.stack.Push(ethutil.BigD(addr))
case oTXSENDER:
vm.stack.Push(ethutil.BigD(vars.sender))
case oTXVALUE:
vm.stack.Push(vars.txValue)
case oTXDATAN:
vm.stack.Push(big.NewInt(int64(len(vars.txData))))
case oTXDATA:
v := vm.stack.Pop()
// v >= len(data)
if v.Cmp(big.NewInt(int64(len(vars.txData)))) >= 0 {
vm.stack.Push(ethutil.Big("0"))
} else {
vm.stack.Push(ethutil.Big(vars.txData[v.Uint64()]))
}
case oBLK_PREVHASH:
vm.stack.Push(ethutil.BigD(vars.prevHash))
case oBLK_COINBASE:
vm.stack.Push(ethutil.BigD(vars.coinbase))
case oBLK_TIMESTAMP:
vm.stack.Push(big.NewInt(vars.time))
case oBLK_NUMBER:
vm.stack.Push(big.NewInt(int64(vars.blockNumber)))
case oBLK_DIFFICULTY:
vm.stack.Push(vars.diff)
case oBASEFEE:
// e = 10^21
e := big.NewInt(0).Exp(big.NewInt(10), big.NewInt(21), big.NewInt(0))
d := new(big.Rat)
d.SetInt(vars.diff)
c := new(big.Rat)
c.SetFloat64(0.5)
// d = diff / 0.5
d.Quo(d, c)
// base = floor(d)
base.Div(d.Num(), d.Denom())
x := new(big.Int)
x.Div(e, base)
// x = floor(10^21 / floor(diff^0.5))
vm.stack.Push(x)
case oSHA256, oSHA3, oRIPEMD160:
// This is probably save
// ceil(pop / 32)
length := int(math.Ceil(float64(vm.stack.Pop().Uint64()) / 32.0))
// New buffer which will contain the concatenated popped items
data := new(bytes.Buffer)
for i := 0; i < length; i++ {
// Encode the number to bytes and have it 32bytes long
num := ethutil.NumberToBytes(vm.stack.Pop().Bytes(), 256)
data.WriteString(string(num))
}
if op == oSHA256 {
vm.stack.Push(base.SetBytes(ethutil.Sha256Bin(data.Bytes())))
} else if op == oSHA3 {
vm.stack.Push(base.SetBytes(ethutil.Sha3Bin(data.Bytes())))
} else {
vm.stack.Push(base.SetBytes(ethutil.Ripemd160(data.Bytes())))
}
case oECMUL:
y := vm.stack.Pop()
x := vm.stack.Pop()
//n := vm.stack.Pop()
//if ethutil.Big(x).Cmp(ethutil.Big(y)) {
data := new(bytes.Buffer)
data.WriteString(x.String())
data.WriteString(y.String())
if secp256k1.VerifyPubkeyValidity(data.Bytes()) == 1 {
// TODO
} else {
// Invalid, push infinity
vm.stack.Push(ethutil.Big("0"))
vm.stack.Push(ethutil.Big("0"))
}
//} else {
// // Invalid, push infinity
// vm.stack.Push("0")
// vm.stack.Push("0")
//}
case oECADD:
case oECSIGN:
case oECRECOVER:
case oECVALID:
case oPUSH:
pc++
vm.stack.Push(contract.GetMem(pc).BigInt())
case oPOP:
// Pop current value of the stack
vm.stack.Pop()
case oDUP:
// Dup top stack
x := vm.stack.Pop()
vm.stack.Push(x)
vm.stack.Push(x)
case oSWAP:
// Swap two top most values
x, y := vm.stack.Popn()
vm.stack.Push(y)
vm.stack.Push(x)
case oMLOAD:
x := vm.stack.Pop()
vm.stack.Push(vm.mem[x.String()])
case oMSTORE:
x, y := vm.stack.Popn()
vm.mem[x.String()] = y
case oSLOAD:
// Load the value in storage and push it on the stack
x := vm.stack.Pop()
// decode the object as a big integer
decoder := ethutil.NewValueFromBytes([]byte(contract.State().Get(x.String())))
if !decoder.IsNil() {
vm.stack.Push(decoder.BigInt())
} else {
vm.stack.Push(ethutil.BigFalse)
}
case oSSTORE:
// Store Y at index X
y, x := vm.stack.Popn()
addr := ethutil.BigToBytes(x, 256)
fmt.Printf(" => %x (%v) @ %v", y.Bytes(), y, ethutil.BigD(addr))
contract.SetAddr(addr, y)
//contract.State().Update(string(idx), string(y))
case oJMP:
x := int(vm.stack.Pop().Uint64())
// Set pc to x - 1 (minus one so the incrementing at the end won't effect it)
pc = x
pc--
case oJMPI:
x := vm.stack.Pop()
// Set pc to x if it's non zero
if x.Cmp(ethutil.BigFalse) != 0 {
pc = int(x.Uint64())
pc--
}
case oIND:
vm.stack.Push(big.NewInt(int64(pc)))
case oEXTRO:
memAddr := vm.stack.Pop()
contractAddr := vm.stack.Pop().Bytes()
// Push the contract's memory on to the stack
vm.stack.Push(contractMemory(state, contractAddr, memAddr))
case oBALANCE:
// Pushes the balance of the popped value on to the stack
account := state.GetAccount(vm.stack.Pop().Bytes())
vm.stack.Push(account.Amount)
case oMKTX:
addr, value := vm.stack.Popn()
from, length := vm.stack.Popn()
makeInlineTx(addr.Bytes(), value, from, length, contract, state)
case oSUICIDE:
recAddr := vm.stack.Pop().Bytes()
// Purge all memory
deletedMemory := contract.state.NewIterator().Purge()
// Add refunds to the pop'ed address
refund := new(big.Int).Mul(StoreFee, big.NewInt(int64(deletedMemory)))
account := state.GetAccount(recAddr)
account.Amount.Add(account.Amount, refund)
// Update the refunding address
state.UpdateAccount(recAddr, account)
// Delete the contract
state.trie.Update(string(addr), "")
fmt.Printf("(%d) => %x\n", deletedMemory, recAddr)
break out
default:
fmt.Printf("Invalid OPCODE: %x\n", op)
}
fmt.Println("")
vm.stack.Print()
pc++
}
state.UpdateContract(addr, contract)
}
func makeInlineTx(addr []byte, value, from, length *big.Int, contract *Contract, state *State) {
fmt.Printf(" => creating inline tx %x %v %v %v", addr, value, from, length)
j := 0
dataItems := make([]string, int(length.Uint64()))
for i := from.Uint64(); i < length.Uint64(); i++ {
dataItems[j] = contract.GetMem(j).Str()
j++
}
tx := NewTransaction(addr, value, dataItems)
if tx.IsContract() {
contract := MakeContract(tx, state)
state.UpdateContract(tx.Hash()[12:], contract)
} else {
account := state.GetAccount(tx.Recipient)
account.Amount.Add(account.Amount, tx.Value)
state.UpdateAccount(tx.Recipient, account)
}
}
// Returns an address from the specified contract's address
func contractMemory(state *State, contractAddr []byte, memAddr *big.Int) *big.Int {
contract := state.GetContract(contractAddr)
if contract == nil {
log.Panicf("invalid contract addr %x", contractAddr)
}
val := state.trie.Get(memAddr.String())
// decode the object as a big integer
decoder := ethutil.NewValueFromBytes([]byte(val))
if decoder.IsNil() {
return ethutil.BigFalse
}
return decoder.BigInt()
}