go-pulse/eth/fetcher/fetcher_test.go
2015-06-18 15:56:08 +03:00

423 lines
15 KiB
Go

package fetcher
import (
"encoding/binary"
"errors"
"math/big"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
)
var (
knownHash = common.Hash{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
unknownHash = common.Hash{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
bannedHash = common.Hash{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}
genesis = createBlock(1, common.Hash{}, knownHash)
)
// idCounter is used by the createHashes method the generate deterministic but unique hashes
var idCounter = int64(2) // #1 is the genesis block
// createHashes generates a batch of hashes rooted at a specific point in the chain.
func createHashes(amount int, root common.Hash) (hashes []common.Hash) {
hashes = make([]common.Hash, amount+1)
hashes[len(hashes)-1] = root
for i := 0; i < len(hashes)-1; i++ {
binary.BigEndian.PutUint64(hashes[i][:8], uint64(idCounter))
idCounter++
}
return
}
// createBlock assembles a new block at the given chain height.
func createBlock(i int, parent, hash common.Hash) *types.Block {
header := &types.Header{Number: big.NewInt(int64(i))}
block := types.NewBlockWithHeader(header)
block.HeaderHash = hash
block.ParentHeaderHash = parent
return block
}
// copyBlock makes a deep copy of a block suitable for local modifications.
func copyBlock(block *types.Block) *types.Block {
return createBlock(int(block.Number().Int64()), block.ParentHeaderHash, block.HeaderHash)
}
// createBlocksFromHashes assembles a collection of blocks, each having a correct
// place in the given hash chain.
func createBlocksFromHashes(hashes []common.Hash) map[common.Hash]*types.Block {
blocks := make(map[common.Hash]*types.Block)
for i := 0; i < len(hashes); i++ {
parent := knownHash
if i < len(hashes)-1 {
parent = hashes[i+1]
}
blocks[hashes[i]] = createBlock(len(hashes)-i, parent, hashes[i])
}
return blocks
}
// fetcherTester is a test simulator for mocking out local block chain.
type fetcherTester struct {
fetcher *Fetcher
ownHashes []common.Hash // Hash chain belonging to the tester
ownBlocks map[common.Hash]*types.Block // Blocks belonging to the tester
}
// newTester creates a new fetcher test mocker.
func newTester() *fetcherTester {
tester := &fetcherTester{
ownHashes: []common.Hash{knownHash},
ownBlocks: map[common.Hash]*types.Block{knownHash: genesis},
}
tester.fetcher = New(tester.hasBlock, tester.importBlock, tester.chainHeight)
tester.fetcher.Start()
return tester
}
// hasBlock checks if a block is pres ent in the testers canonical chain.
func (f *fetcherTester) hasBlock(hash common.Hash) bool {
_, ok := f.ownBlocks[hash]
return ok
}
// importBlock injects a new blocks into the simulated chain.
func (f *fetcherTester) importBlock(peer string, block *types.Block) error {
// Make sure the parent in known
if _, ok := f.ownBlocks[block.ParentHash()]; !ok {
return errors.New("unknown parent")
}
// Discard any new blocks if the same height already exists
if block.NumberU64() <= f.ownBlocks[f.ownHashes[len(f.ownHashes)-1]].NumberU64() {
return nil
}
// Otherwise build our current chain
f.ownHashes = append(f.ownHashes, block.Hash())
f.ownBlocks[block.Hash()] = block
return nil
}
// chainHeight retrieves the current height (block number) of the chain.
func (f *fetcherTester) chainHeight() uint64 {
return f.ownBlocks[f.ownHashes[len(f.ownHashes)-1]].NumberU64()
}
// peerFetcher retrieves a fetcher associated with a simulated peer.
func (f *fetcherTester) makeFetcher(blocks map[common.Hash]*types.Block) blockRequesterFn {
// Copy all the blocks to ensure they are not tampered with
closure := make(map[common.Hash]*types.Block)
for hash, block := range blocks {
closure[hash] = copyBlock(block)
}
// Create a function that returns blocks from the closure
return func(hashes []common.Hash) error {
// Gather the blocks to return
blocks := make([]*types.Block, 0, len(hashes))
for _, hash := range hashes {
if block, ok := closure[hash]; ok {
blocks = append(blocks, block)
}
}
// Return on a new thread
go f.fetcher.Filter(blocks)
return nil
}
}
// Tests that a fetcher accepts block announcements and initiates retrievals for
// them, successfully importing into the local chain.
func TestSequentialAnnouncements(t *testing.T) {
// Create a chain of blocks to import
targetBlocks := 24
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes)
tester := newTester()
fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks until all are imported
for i := len(hashes) - 1; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond)
}
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
}
// Tests that if blocks are announced by multiple peers (or even the same buggy
// peer), they will only get downloaded at most once.
func TestConcurrentAnnouncements(t *testing.T) {
// Create a chain of blocks to import
targetBlocks := 24
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes)
// Assemble a tester with a built in counter for the requests
tester := newTester()
fetcher := tester.makeFetcher(blocks)
counter := uint32(0)
wrapper := func(hashes []common.Hash) error {
atomic.AddUint32(&counter, uint32(len(hashes)))
return fetcher(hashes)
}
// Iteratively announce blocks until all are imported
for i := len(hashes) - 1; i >= 0; i-- {
tester.fetcher.Notify("first", hashes[i], time.Now().Add(-arriveTimeout), wrapper)
tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout+time.Millisecond), wrapper)
tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout-time.Millisecond), wrapper)
time.Sleep(50 * time.Millisecond)
}
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
// Make sure no blocks were retrieved twice
if int(counter) != targetBlocks {
t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks)
}
}
// Tests that announcements arriving while a previous is being fetched still
// results in a valid import.
func TestOverlappingAnnouncements(t *testing.T) {
// Create a chain of blocks to import
targetBlocks := 24
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes)
tester := newTester()
fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, but overlap them continuously
delay, overlap := 50*time.Millisecond, time.Duration(5)
for i := len(hashes) - 1; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout+overlap*delay), fetcher)
time.Sleep(delay)
}
time.Sleep(overlap * delay)
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
}
// Tests that announces already being retrieved will not be duplicated.
func TestPendingDeduplication(t *testing.T) {
// Create a hash and corresponding block
hashes := createHashes(1, knownHash)
blocks := createBlocksFromHashes(hashes)
// Assemble a tester with a built in counter and delayed fetcher
tester := newTester()
fetcher := tester.makeFetcher(blocks)
delay := 50 * time.Millisecond
counter := uint32(0)
wrapper := func(hashes []common.Hash) error {
atomic.AddUint32(&counter, uint32(len(hashes)))
// Simulate a long running fetch
go func() {
time.Sleep(delay)
fetcher(hashes)
}()
return nil
}
// Announce the same block many times until it's fetched (wait for any pending ops)
for !tester.hasBlock(hashes[0]) {
tester.fetcher.Notify("repeater", hashes[0], time.Now().Add(-arriveTimeout), wrapper)
time.Sleep(time.Millisecond)
}
time.Sleep(delay)
// Check that all blocks were imported and none fetched twice
if imported := len(tester.ownBlocks); imported != 2 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 2)
}
if int(counter) != 1 {
t.Fatalf("retrieval count mismatch: have %v, want %v", counter, 1)
}
}
// Tests that announcements retrieved in a random order are cached and eventually
// imported when all the gaps are filled in.
func TestRandomArrivalImport(t *testing.T) {
// Create a chain of blocks to import, and choose one to delay
targetBlocks := 24
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes)
skip := targetBlocks / 2
tester := newTester()
fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, skipping one entry
for i := len(hashes) - 1; i >= 0; i-- {
if i != skip {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond)
}
}
// Finally announce the skipped entry and check full import
tester.fetcher.Notify("valid", hashes[skip], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond)
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
}
// Tests that direct block enqueues (due to block propagation vs. hash announce)
// are correctly schedule, filling and import queue gaps.
func TestQueueGapFill(t *testing.T) {
// Create a chain of blocks to import, and choose one to not announce at all
targetBlocks := 24
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes)
skip := targetBlocks / 2
tester := newTester()
fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, skipping one entry
for i := len(hashes) - 1; i >= 0; i-- {
if i != skip {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond)
}
}
// Fill the missing block directly as if propagated
tester.fetcher.Enqueue("valid", blocks[hashes[skip]])
time.Sleep(50 * time.Millisecond)
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
}
// Tests that blocks arriving from various sources (multiple propagations, hash
// announces, etc) do not get scheduled for import multiple times.
func TestImportDeduplication(t *testing.T) {
// Create two blocks to import (one for duplication, the other for stalling)
hashes := createHashes(2, knownHash)
blocks := createBlocksFromHashes(hashes)
// Create the tester and wrap the importer with a counter
tester := newTester()
fetcher := tester.makeFetcher(blocks)
counter := uint32(0)
tester.fetcher.importBlock = func(peer string, block *types.Block) error {
atomic.AddUint32(&counter, 1)
return tester.importBlock(peer, block)
}
// Announce the duplicating block, wait for retrieval, and also propagate directly
tester.fetcher.Notify("valid", hashes[0], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond)
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
tester.fetcher.Enqueue("valid", blocks[hashes[0]])
// Fill the missing block directly as if propagated, and check import uniqueness
tester.fetcher.Enqueue("valid", blocks[hashes[1]])
time.Sleep(50 * time.Millisecond)
if imported := len(tester.ownBlocks); imported != 3 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 3)
}
if counter != 2 {
t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2)
}
}
// Tests that blocks with numbers much lower or higher than out current head get
// discarded no prevent wasting resources on useless blocks from faulty peers.
func TestDistantDiscarding(t *testing.T) {
// Create a long chain to import
hashes := createHashes(3*maxQueueDist, knownHash)
blocks := createBlocksFromHashes(hashes)
head := hashes[len(hashes)/2]
// Create a tester and simulate a head block being the middle of the above chain
tester := newTester()
tester.ownHashes = []common.Hash{head}
tester.ownBlocks = map[common.Hash]*types.Block{head: blocks[head]}
// Ensure that a block with a lower number than the threshold is discarded
tester.fetcher.Enqueue("lower", blocks[hashes[0]])
time.Sleep(10 * time.Millisecond)
if !tester.fetcher.queue.Empty() {
t.Fatalf("fetcher queued stale block")
}
// Ensure that a block with a higher number than the threshold is discarded
tester.fetcher.Enqueue("higher", blocks[hashes[len(hashes)-1]])
time.Sleep(10 * time.Millisecond)
if !tester.fetcher.queue.Empty() {
t.Fatalf("fetcher queued future block")
}
}
// Tests that if multiple uncles (i.e. blocks at the same height) are queued for
// importing, then they will get inserted in phases, previous heights needing to
// complete before the next numbered blocks can begin.
func TestCompetingImports(t *testing.T) {
// Generate a few soft-forks for concurrent imports
hashesA := createHashes(16, knownHash)
hashesB := createHashes(16, knownHash)
hashesC := createHashes(16, knownHash)
blocksA := createBlocksFromHashes(hashesA)
blocksB := createBlocksFromHashes(hashesB)
blocksC := createBlocksFromHashes(hashesC)
// Create a tester, and override the import to check number reversals
tester := newTester()
first := int32(1)
height := uint64(1)
tester.fetcher.importBlock = func(peer string, block *types.Block) error {
// Check for any phase reordering
if prev := atomic.LoadUint64(&height); block.NumberU64() < prev {
t.Errorf("phase reversal: have %v, want %v", block.NumberU64(), prev)
}
atomic.StoreUint64(&height, block.NumberU64())
// Sleep a bit on the first import not to race with the enqueues
if atomic.CompareAndSwapInt32(&first, 1, 0) {
time.Sleep(50 * time.Millisecond)
}
return tester.importBlock(peer, block)
}
// Queue up everything but with a missing link
for i := 0; i < len(hashesA)-2; i++ {
tester.fetcher.Enqueue("chain A", blocksA[hashesA[i]])
tester.fetcher.Enqueue("chain B", blocksB[hashesB[i]])
tester.fetcher.Enqueue("chain C", blocksC[hashesC[i]])
}
// Add the three missing links, and wait for a full import
tester.fetcher.Enqueue("chain A", blocksA[hashesA[len(hashesA)-2]])
tester.fetcher.Enqueue("chain B", blocksB[hashesB[len(hashesB)-2]])
tester.fetcher.Enqueue("chain C", blocksC[hashesC[len(hashesC)-2]])
start := time.Now()
for len(tester.ownHashes) != len(hashesA) && time.Since(start) < time.Second {
time.Sleep(50 * time.Millisecond)
}
if len(tester.ownHashes) != len(hashesA) {
t.Fatalf("chain length mismatch: have %v, want %v", len(tester.ownHashes), len(hashesA))
}
}