go-pulse/core/vm/evm.go
Martin HS a5a4fa7032
all: use uint256 in state (#28598)
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
2024-01-23 14:51:58 +01:00

530 lines
21 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"math/big"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
type (
// CanTransferFunc is the signature of a transfer guard function
CanTransferFunc func(StateDB, common.Address, *uint256.Int) bool
// TransferFunc is the signature of a transfer function
TransferFunc func(StateDB, common.Address, common.Address, *uint256.Int)
// GetHashFunc returns the n'th block hash in the blockchain
// and is used by the BLOCKHASH EVM op code.
GetHashFunc func(uint64) common.Hash
)
func (evm *EVM) precompile(addr common.Address) (PrecompiledContract, bool) {
var precompiles map[common.Address]PrecompiledContract
switch {
case evm.chainRules.IsCancun:
precompiles = PrecompiledContractsCancun
case evm.chainRules.IsBerlin:
precompiles = PrecompiledContractsBerlin
case evm.chainRules.IsIstanbul:
precompiles = PrecompiledContractsIstanbul
case evm.chainRules.IsByzantium:
precompiles = PrecompiledContractsByzantium
default:
precompiles = PrecompiledContractsHomestead
}
p, ok := precompiles[addr]
return p, ok
}
// BlockContext provides the EVM with auxiliary information. Once provided
// it shouldn't be modified.
type BlockContext struct {
// CanTransfer returns whether the account contains
// sufficient ether to transfer the value
CanTransfer CanTransferFunc
// Transfer transfers ether from one account to the other
Transfer TransferFunc
// GetHash returns the hash corresponding to n
GetHash GetHashFunc
// Block information
Coinbase common.Address // Provides information for COINBASE
GasLimit uint64 // Provides information for GASLIMIT
BlockNumber *big.Int // Provides information for NUMBER
Time uint64 // Provides information for TIME
Difficulty *big.Int // Provides information for DIFFICULTY
BaseFee *big.Int // Provides information for BASEFEE (0 if vm runs with NoBaseFee flag and 0 gas price)
BlobBaseFee *big.Int // Provides information for BLOBBASEFEE (0 if vm runs with NoBaseFee flag and 0 blob gas price)
Random *common.Hash // Provides information for PREVRANDAO
}
// TxContext provides the EVM with information about a transaction.
// All fields can change between transactions.
type TxContext struct {
// Message information
Origin common.Address // Provides information for ORIGIN
GasPrice *big.Int // Provides information for GASPRICE (and is used to zero the basefee if NoBaseFee is set)
BlobHashes []common.Hash // Provides information for BLOBHASH
BlobFeeCap *big.Int // Is used to zero the blobbasefee if NoBaseFee is set
}
// EVM is the Ethereum Virtual Machine base object and provides
// the necessary tools to run a contract on the given state with
// the provided context. It should be noted that any error
// generated through any of the calls should be considered a
// revert-state-and-consume-all-gas operation, no checks on
// specific errors should ever be performed. The interpreter makes
// sure that any errors generated are to be considered faulty code.
//
// The EVM should never be reused and is not thread safe.
type EVM struct {
// Context provides auxiliary blockchain related information
Context BlockContext
TxContext
// StateDB gives access to the underlying state
StateDB StateDB
// Depth is the current call stack
depth int
// chainConfig contains information about the current chain
chainConfig *params.ChainConfig
// chain rules contains the chain rules for the current epoch
chainRules params.Rules
// virtual machine configuration options used to initialise the
// evm.
Config Config
// global (to this context) ethereum virtual machine
// used throughout the execution of the tx.
interpreter *EVMInterpreter
// abort is used to abort the EVM calling operations
abort atomic.Bool
// callGasTemp holds the gas available for the current call. This is needed because the
// available gas is calculated in gasCall* according to the 63/64 rule and later
// applied in opCall*.
callGasTemp uint64
}
// NewEVM returns a new EVM. The returned EVM is not thread safe and should
// only ever be used *once*.
func NewEVM(blockCtx BlockContext, txCtx TxContext, statedb StateDB, chainConfig *params.ChainConfig, config Config) *EVM {
// If basefee tracking is disabled (eth_call, eth_estimateGas, etc), and no
// gas prices were specified, lower the basefee to 0 to avoid breaking EVM
// invariants (basefee < feecap)
if config.NoBaseFee {
if txCtx.GasPrice.BitLen() == 0 {
blockCtx.BaseFee = new(big.Int)
}
if txCtx.BlobFeeCap != nil && txCtx.BlobFeeCap.BitLen() == 0 {
blockCtx.BlobBaseFee = new(big.Int)
}
}
evm := &EVM{
Context: blockCtx,
TxContext: txCtx,
StateDB: statedb,
Config: config,
chainConfig: chainConfig,
chainRules: chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Random != nil, blockCtx.Time),
}
evm.interpreter = NewEVMInterpreter(evm)
return evm
}
// Reset resets the EVM with a new transaction context.Reset
// This is not threadsafe and should only be done very cautiously.
func (evm *EVM) Reset(txCtx TxContext, statedb StateDB) {
evm.TxContext = txCtx
evm.StateDB = statedb
}
// Cancel cancels any running EVM operation. This may be called concurrently and
// it's safe to be called multiple times.
func (evm *EVM) Cancel() {
evm.abort.Store(true)
}
// Cancelled returns true if Cancel has been called
func (evm *EVM) Cancelled() bool {
return evm.abort.Load()
}
// Interpreter returns the current interpreter
func (evm *EVM) Interpreter() *EVMInterpreter {
return evm.interpreter
}
// Call executes the contract associated with the addr with the given input as
// parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
if value.Sign() != 0 && !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
snapshot := evm.StateDB.Snapshot()
p, isPrecompile := evm.precompile(addr)
debug := evm.Config.Tracer != nil
if !evm.StateDB.Exist(addr) {
if !isPrecompile && evm.chainRules.IsEIP158 && value.Sign() == 0 {
// Calling a non existing account, don't do anything, but ping the tracer
if debug {
if evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value.ToBig())
evm.Config.Tracer.CaptureEnd(ret, 0, nil)
} else {
evm.Config.Tracer.CaptureEnter(CALL, caller.Address(), addr, input, gas, value.ToBig())
evm.Config.Tracer.CaptureExit(ret, 0, nil)
}
}
return nil, gas, nil
}
evm.StateDB.CreateAccount(addr)
}
evm.Context.Transfer(evm.StateDB, caller.Address(), addr, value)
// Capture the tracer start/end events in debug mode
if debug {
if evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value.ToBig())
defer func(startGas uint64) { // Lazy evaluation of the parameters
evm.Config.Tracer.CaptureEnd(ret, startGas-gas, err)
}(gas)
} else {
// Handle tracer events for entering and exiting a call frame
evm.Config.Tracer.CaptureEnter(CALL, caller.Address(), addr, input, gas, value.ToBig())
defer func(startGas uint64) {
evm.Config.Tracer.CaptureExit(ret, startGas-gas, err)
}(gas)
}
}
if isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
code := evm.StateDB.GetCode(addr)
if len(code) == 0 {
ret, err = nil, nil // gas is unchanged
} else {
addrCopy := addr
// If the account has no code, we can abort here
// The depth-check is already done, and precompiles handled above
contract := NewContract(caller, AccountRef(addrCopy), value, gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), code)
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in homestead this also counts for code storage gas errors.
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
// TODO: consider clearing up unused snapshots:
//} else {
// evm.StateDB.DiscardSnapshot(snapshot)
}
return ret, gas, err
}
// CallCode executes the contract associated with the addr with the given input
// as parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address'
// code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
// Note although it's noop to transfer X ether to caller itself. But
// if caller doesn't have enough balance, it would be an error to allow
// over-charging itself. So the check here is necessary.
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
var snapshot = evm.StateDB.Snapshot()
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
evm.Config.Tracer.CaptureEnter(CALLCODE, caller.Address(), addr, input, gas, value.ToBig())
defer func(startGas uint64) {
evm.Config.Tracer.CaptureExit(ret, startGas-gas, err)
}(gas)
}
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(caller.Address()), value, gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
// DelegateCall executes the contract associated with the addr with the given input
// as parameters. It reverses the state in case of an execution error.
//
// DelegateCall differs from CallCode in the sense that it executes the given address'
// code with the caller as context and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
var snapshot = evm.StateDB.Snapshot()
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
// NOTE: caller must, at all times be a contract. It should never happen
// that caller is something other than a Contract.
parent := caller.(*Contract)
// DELEGATECALL inherits value from parent call
evm.Config.Tracer.CaptureEnter(DELEGATECALL, caller.Address(), addr, input, gas, parent.value.ToBig())
defer func(startGas uint64) {
evm.Config.Tracer.CaptureExit(ret, startGas-gas, err)
}(gas)
}
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
addrCopy := addr
// Initialise a new contract and make initialise the delegate values
contract := NewContract(caller, AccountRef(caller.Address()), nil, gas).AsDelegate()
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
// StaticCall executes the contract associated with the addr with the given input
// as parameters while disallowing any modifications to the state during the call.
// Opcodes that attempt to perform such modifications will result in exceptions
// instead of performing the modifications.
func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// We take a snapshot here. This is a bit counter-intuitive, and could probably be skipped.
// However, even a staticcall is considered a 'touch'. On mainnet, static calls were introduced
// after all empty accounts were deleted, so this is not required. However, if we omit this,
// then certain tests start failing; stRevertTest/RevertPrecompiledTouchExactOOG.json.
// We could change this, but for now it's left for legacy reasons
var snapshot = evm.StateDB.Snapshot()
// We do an AddBalance of zero here, just in order to trigger a touch.
// This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium,
// but is the correct thing to do and matters on other networks, in tests, and potential
// future scenarios
evm.StateDB.AddBalance(addr, new(uint256.Int))
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
evm.Config.Tracer.CaptureEnter(STATICCALL, caller.Address(), addr, input, gas, nil)
defer func(startGas uint64) {
evm.Config.Tracer.CaptureExit(ret, startGas-gas, err)
}(gas)
}
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
// At this point, we use a copy of address. If we don't, the go compiler will
// leak the 'contract' to the outer scope, and make allocation for 'contract'
// even if the actual execution ends on RunPrecompiled above.
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(addrCopy), new(uint256.Int), gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in Homestead this also counts for code storage gas errors.
ret, err = evm.interpreter.Run(contract, input, true)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
type codeAndHash struct {
code []byte
hash common.Hash
}
func (c *codeAndHash) Hash() common.Hash {
if c.hash == (common.Hash{}) {
c.hash = crypto.Keccak256Hash(c.code)
}
return c.hash
}
// create creates a new contract using code as deployment code.
func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address common.Address, typ OpCode) ([]byte, common.Address, uint64, error) {
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth) {
return nil, common.Address{}, gas, ErrDepth
}
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, common.Address{}, gas, ErrInsufficientBalance
}
nonce := evm.StateDB.GetNonce(caller.Address())
if nonce+1 < nonce {
return nil, common.Address{}, gas, ErrNonceUintOverflow
}
evm.StateDB.SetNonce(caller.Address(), nonce+1)
// We add this to the access list _before_ taking a snapshot. Even if the creation fails,
// the access-list change should not be rolled back
if evm.chainRules.IsBerlin {
evm.StateDB.AddAddressToAccessList(address)
}
// Ensure there's no existing contract already at the designated address
contractHash := evm.StateDB.GetCodeHash(address)
if evm.StateDB.GetNonce(address) != 0 || (contractHash != (common.Hash{}) && contractHash != types.EmptyCodeHash) {
return nil, common.Address{}, 0, ErrContractAddressCollision
}
// Create a new account on the state
snapshot := evm.StateDB.Snapshot()
evm.StateDB.CreateAccount(address)
if evm.chainRules.IsEIP158 {
evm.StateDB.SetNonce(address, 1)
}
evm.Context.Transfer(evm.StateDB, caller.Address(), address, value)
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(address), value, gas)
contract.SetCodeOptionalHash(&address, codeAndHash)
if evm.Config.Tracer != nil {
if evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), address, true, codeAndHash.code, gas, value.ToBig())
} else {
evm.Config.Tracer.CaptureEnter(typ, caller.Address(), address, codeAndHash.code, gas, value.ToBig())
}
}
ret, err := evm.interpreter.Run(contract, nil, false)
// Check whether the max code size has been exceeded, assign err if the case.
if err == nil && evm.chainRules.IsEIP158 && len(ret) > params.MaxCodeSize {
err = ErrMaxCodeSizeExceeded
}
// Reject code starting with 0xEF if EIP-3541 is enabled.
if err == nil && len(ret) >= 1 && ret[0] == 0xEF && evm.chainRules.IsLondon {
err = ErrInvalidCode
}
// if the contract creation ran successfully and no errors were returned
// calculate the gas required to store the code. If the code could not
// be stored due to not enough gas set an error and let it be handled
// by the error checking condition below.
if err == nil {
createDataGas := uint64(len(ret)) * params.CreateDataGas
if contract.UseGas(createDataGas) {
evm.StateDB.SetCode(address, ret)
} else {
err = ErrCodeStoreOutOfGas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in homestead this also counts for code storage gas errors.
if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
contract.UseGas(contract.Gas)
}
}
if evm.Config.Tracer != nil {
if evm.depth == 0 {
evm.Config.Tracer.CaptureEnd(ret, gas-contract.Gas, err)
} else {
evm.Config.Tracer.CaptureExit(ret, gas-contract.Gas, err)
}
}
return ret, address, contract.Gas, err
}
// Create creates a new contract using code as deployment code.
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address()))
return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr, CREATE)
}
// Create2 creates a new contract using code as deployment code.
//
// The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:]
// instead of the usual sender-and-nonce-hash as the address where the contract is initialized at.
func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
codeAndHash := &codeAndHash{code: code}
contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes())
return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2)
}
// ChainConfig returns the environment's chain configuration
func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig }