go-pulse/core/txpool/legacypool/legacypool2_test.go
Ng Wei Han beb2954fa4
core/txpool/legacypool: use uint256.Int instead of big.Int (#28606)
This change makes the legacy transaction pool use of `uint256.Int` instead of `big.Int`. The changes are made primarily only on the internal functions of legacypool. 

---------

Co-authored-by: Martin Holst Swende <martin@swende.se>
2024-02-13 10:10:11 +01:00

242 lines
9.4 KiB
Go

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package legacypool
import (
"crypto/ecdsa"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
"github.com/holiman/uint256"
)
func pricedValuedTransaction(nonce uint64, value int64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(value), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
return tx
}
func count(t *testing.T, pool *LegacyPool) (pending int, queued int) {
t.Helper()
pending, queued = pool.stats()
if err := validatePoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
return pending, queued
}
func fillPool(t testing.TB, pool *LegacyPool) {
t.Helper()
// Create a number of test accounts, fund them and make transactions
executableTxs := types.Transactions{}
nonExecutableTxs := types.Transactions{}
for i := 0; i < 384; i++ {
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(10000000000))
// Add executable ones
for j := 0; j < int(pool.config.AccountSlots); j++ {
executableTxs = append(executableTxs, pricedTransaction(uint64(j), 100000, big.NewInt(300), key))
}
}
// Import the batch and verify that limits have been enforced
pool.addRemotesSync(executableTxs)
pool.addRemotesSync(nonExecutableTxs)
pending, queued := pool.Stats()
slots := pool.all.Slots()
// sanity-check that the test prerequisites are ok (pending full)
if have, want := pending, slots; have != want {
t.Fatalf("have %d, want %d", have, want)
}
if have, want := queued, 0; have != want {
t.Fatalf("have %d, want %d", have, want)
}
t.Logf("pool.config: GlobalSlots=%d, GlobalQueue=%d\n", pool.config.GlobalSlots, pool.config.GlobalQueue)
t.Logf("pending: %d queued: %d, all: %d\n", pending, queued, slots)
}
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
// executable transactions
func TestTransactionFutureAttack(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
config := testTxPoolConfig
config.GlobalQueue = 100
config.GlobalSlots = 100
pool := New(config, blockchain)
pool.Init(config.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
fillPool(t, pool)
pending, _ := pool.Stats()
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000))
futureTxs := types.Transactions{}
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 100000, big.NewInt(500), key))
}
for i := 0; i < 5; i++ {
pool.addRemotesSync(futureTxs)
newPending, newQueued := count(t, pool)
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
}
}
newPending, _ := pool.Stats()
// Pending should not have been touched
if have, want := newPending, pending; have < want {
t.Errorf("wrong pending-count, have %d, want %d (GlobalSlots: %d)",
have, want, pool.config.GlobalSlots)
}
}
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
// executable transactions
func TestTransactionFuture1559(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
pool := New(testTxPoolConfig, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
// Create a number of test accounts, fund them and make transactions
fillPool(t, pool)
pending, _ := pool.Stats()
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000))
futureTxs := types.Transactions{}
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
futureTxs = append(futureTxs, dynamicFeeTx(1000+uint64(j), 100000, big.NewInt(200), big.NewInt(101), key))
}
pool.addRemotesSync(futureTxs)
}
newPending, _ := pool.Stats()
// Pending should not have been touched
if have, want := newPending, pending; have != want {
t.Errorf("Wrong pending-count, have %d, want %d (GlobalSlots: %d)",
have, want, pool.config.GlobalSlots)
}
}
// Tests that if a batch of balance-overdraft txs arrive, they do not kick out
// executable transactions
func TestTransactionZAttack(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
pool := New(testTxPoolConfig, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
// Create a number of test accounts, fund them and make transactions
fillPool(t, pool)
countInvalidPending := func() int {
t.Helper()
var ivpendingNum int
pendingtxs, _ := pool.Content()
for account, txs := range pendingtxs {
cur_balance := new(big.Int).Set(pool.currentState.GetBalance(account).ToBig())
for _, tx := range txs {
if cur_balance.Cmp(tx.Value()) <= 0 {
ivpendingNum++
} else {
cur_balance.Sub(cur_balance, tx.Value())
}
}
}
if err := validatePoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
return ivpendingNum
}
ivPending := countInvalidPending()
t.Logf("invalid pending: %d\n", ivPending)
// Now, DETER-Z attack starts, let's add a bunch of expensive non-executables (from N accounts) along with balance-overdraft txs (from one account), and see if the pending-count drops
for j := 0; j < int(pool.config.GlobalQueue); j++ {
futureTxs := types.Transactions{}
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000))
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 21000, big.NewInt(500), key))
pool.addRemotesSync(futureTxs)
}
overDraftTxs := types.Transactions{}
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000))
for j := 0; j < int(pool.config.GlobalSlots); j++ {
overDraftTxs = append(overDraftTxs, pricedValuedTransaction(uint64(j), 600000000000, 21000, big.NewInt(500), key))
}
}
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
newPending, newQueued := count(t, pool)
newIvPending := countInvalidPending()
t.Logf("pool.all.Slots(): %d\n", pool.all.Slots())
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
t.Logf("invalid pending: %d\n", newIvPending)
// Pending should not have been touched
if newIvPending != ivPending {
t.Errorf("Wrong invalid pending-count, have %d, want %d (GlobalSlots: %d, queued: %d)",
newIvPending, ivPending, pool.config.GlobalSlots, newQueued)
}
}
func BenchmarkFutureAttack(b *testing.B) {
// Create the pool to test the limit enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
config := testTxPoolConfig
config.GlobalQueue = 100
config.GlobalSlots = 100
pool := New(config, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
fillPool(b, pool)
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000))
futureTxs := types.Transactions{}
for n := 0; n < b.N; n++ {
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(n), 100000, big.NewInt(500), key))
}
b.ResetTimer()
for i := 0; i < 5; i++ {
pool.addRemotesSync(futureTxs)
}
}