go-pulse/core/vm/instructions.go
Greg Colvin cd57d5cd38
core/vm: EIP-2315, JUMPSUB for the EVM (#20619)
* core/vm: implement EIP 2315, subroutines for the EVM

* core/vm: eip 2315 - lintfix + check jump dest validity + check ret stack size constraints

  logger: markdown-friendly traces, validate jumpdest, more testcase, correct opcodes

* core/vm: update subroutines acc to eip: disallow walk-into

* core/vm/eips: gas cost changes for subroutines

* core/vm: update opcodes for EIP-2315

* core/vm: define RETURNSUB as a 'jumping' operation + review concerns

Co-authored-by: Martin Holst Swende <martin@swende.se>
2020-06-02 13:30:16 +03:00

993 lines
33 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
"golang.org/x/crypto/sha3"
)
var (
bigZero = new(big.Int)
tt255 = math.BigPow(2, 255)
)
func opAdd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
math.U256(y.Add(x, y))
interpreter.intPool.putOne(x)
return nil, nil
}
func opSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
math.U256(y.Sub(x, y))
interpreter.intPool.putOne(x)
return nil, nil
}
func opMul(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.pop()
callContext.stack.push(math.U256(x.Mul(x, y)))
interpreter.intPool.putOne(y)
return nil, nil
}
func opDiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
if y.Sign() != 0 {
math.U256(y.Div(x, y))
} else {
y.SetUint64(0)
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opSdiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := math.S256(callContext.stack.pop()), math.S256(callContext.stack.pop())
res := interpreter.intPool.getZero()
if y.Sign() == 0 || x.Sign() == 0 {
callContext.stack.push(res)
} else {
if x.Sign() != y.Sign() {
res.Div(x.Abs(x), y.Abs(y))
res.Neg(res)
} else {
res.Div(x.Abs(x), y.Abs(y))
}
callContext.stack.push(math.U256(res))
}
interpreter.intPool.put(x, y)
return nil, nil
}
func opMod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.pop()
if y.Sign() == 0 {
callContext.stack.push(x.SetUint64(0))
} else {
callContext.stack.push(math.U256(x.Mod(x, y)))
}
interpreter.intPool.putOne(y)
return nil, nil
}
func opSmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := math.S256(callContext.stack.pop()), math.S256(callContext.stack.pop())
res := interpreter.intPool.getZero()
if y.Sign() == 0 {
callContext.stack.push(res)
} else {
if x.Sign() < 0 {
res.Mod(x.Abs(x), y.Abs(y))
res.Neg(res)
} else {
res.Mod(x.Abs(x), y.Abs(y))
}
callContext.stack.push(math.U256(res))
}
interpreter.intPool.put(x, y)
return nil, nil
}
func opExp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
base, exponent := callContext.stack.pop(), callContext.stack.pop()
// some shortcuts
cmpToOne := exponent.Cmp(big1)
if cmpToOne < 0 { // Exponent is zero
// x ^ 0 == 1
callContext.stack.push(base.SetUint64(1))
} else if base.Sign() == 0 {
// 0 ^ y, if y != 0, == 0
callContext.stack.push(base.SetUint64(0))
} else if cmpToOne == 0 { // Exponent is one
// x ^ 1 == x
callContext.stack.push(base)
} else {
callContext.stack.push(math.Exp(base, exponent))
interpreter.intPool.putOne(base)
}
interpreter.intPool.putOne(exponent)
return nil, nil
}
func opSignExtend(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
back := callContext.stack.pop()
if back.Cmp(big.NewInt(31)) < 0 {
bit := uint(back.Uint64()*8 + 7)
num := callContext.stack.pop()
mask := back.Lsh(common.Big1, bit)
mask.Sub(mask, common.Big1)
if num.Bit(int(bit)) > 0 {
num.Or(num, mask.Not(mask))
} else {
num.And(num, mask)
}
callContext.stack.push(math.U256(num))
}
interpreter.intPool.putOne(back)
return nil, nil
}
func opNot(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x := callContext.stack.peek()
math.U256(x.Not(x))
return nil, nil
}
func opLt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
if x.Cmp(y) < 0 {
y.SetUint64(1)
} else {
y.SetUint64(0)
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opGt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
if x.Cmp(y) > 0 {
y.SetUint64(1)
} else {
y.SetUint64(0)
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opSlt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
xSign := x.Cmp(tt255)
ySign := y.Cmp(tt255)
switch {
case xSign >= 0 && ySign < 0:
y.SetUint64(1)
case xSign < 0 && ySign >= 0:
y.SetUint64(0)
default:
if x.Cmp(y) < 0 {
y.SetUint64(1)
} else {
y.SetUint64(0)
}
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opSgt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
xSign := x.Cmp(tt255)
ySign := y.Cmp(tt255)
switch {
case xSign >= 0 && ySign < 0:
y.SetUint64(0)
case xSign < 0 && ySign >= 0:
y.SetUint64(1)
default:
if x.Cmp(y) > 0 {
y.SetUint64(1)
} else {
y.SetUint64(0)
}
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opEq(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
if x.Cmp(y) == 0 {
y.SetUint64(1)
} else {
y.SetUint64(0)
}
interpreter.intPool.putOne(x)
return nil, nil
}
func opIszero(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x := callContext.stack.peek()
if x.Sign() > 0 {
x.SetUint64(0)
} else {
x.SetUint64(1)
}
return nil, nil
}
func opAnd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.pop()
callContext.stack.push(x.And(x, y))
interpreter.intPool.putOne(y)
return nil, nil
}
func opOr(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
y.Or(x, y)
interpreter.intPool.putOne(x)
return nil, nil
}
func opXor(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y := callContext.stack.pop(), callContext.stack.peek()
y.Xor(x, y)
interpreter.intPool.putOne(x)
return nil, nil
}
func opByte(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
th, val := callContext.stack.pop(), callContext.stack.peek()
if th.Cmp(common.Big32) < 0 {
b := math.Byte(val, 32, int(th.Int64()))
val.SetUint64(uint64(b))
} else {
val.SetUint64(0)
}
interpreter.intPool.putOne(th)
return nil, nil
}
func opAddmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y, z := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
if z.Cmp(bigZero) > 0 {
x.Add(x, y)
x.Mod(x, z)
callContext.stack.push(math.U256(x))
} else {
callContext.stack.push(x.SetUint64(0))
}
interpreter.intPool.put(y, z)
return nil, nil
}
func opMulmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
x, y, z := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
if z.Cmp(bigZero) > 0 {
x.Mul(x, y)
x.Mod(x, z)
callContext.stack.push(math.U256(x))
} else {
callContext.stack.push(x.SetUint64(0))
}
interpreter.intPool.put(y, z)
return nil, nil
}
// opSHL implements Shift Left
// The SHL instruction (shift left) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the left by arg1 number of bits.
func opSHL(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := math.U256(callContext.stack.pop()), math.U256(callContext.stack.peek())
defer interpreter.intPool.putOne(shift) // First operand back into the pool
if shift.Cmp(common.Big256) >= 0 {
value.SetUint64(0)
return nil, nil
}
n := uint(shift.Uint64())
math.U256(value.Lsh(value, n))
return nil, nil
}
// opSHR implements Logical Shift Right
// The SHR instruction (logical shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with zero fill.
func opSHR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards
shift, value := math.U256(callContext.stack.pop()), math.U256(callContext.stack.peek())
defer interpreter.intPool.putOne(shift) // First operand back into the pool
if shift.Cmp(common.Big256) >= 0 {
value.SetUint64(0)
return nil, nil
}
n := uint(shift.Uint64())
math.U256(value.Rsh(value, n))
return nil, nil
}
// opSAR implements Arithmetic Shift Right
// The SAR instruction (arithmetic shift right) pops 2 values from the stack, first arg1 and then arg2,
// and pushes on the stack arg2 shifted to the right by arg1 number of bits with sign extension.
func opSAR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Note, S256 returns (potentially) a new bigint, so we're popping, not peeking this one
shift, value := math.U256(callContext.stack.pop()), math.S256(callContext.stack.pop())
defer interpreter.intPool.putOne(shift) // First operand back into the pool
if shift.Cmp(common.Big256) >= 0 {
if value.Sign() >= 0 {
value.SetUint64(0)
} else {
value.SetInt64(-1)
}
callContext.stack.push(math.U256(value))
return nil, nil
}
n := uint(shift.Uint64())
value.Rsh(value, n)
callContext.stack.push(math.U256(value))
return nil, nil
}
func opSha3(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.pop(), callContext.stack.pop()
data := callContext.memory.GetPtr(offset.Int64(), size.Int64())
if interpreter.hasher == nil {
interpreter.hasher = sha3.NewLegacyKeccak256().(keccakState)
} else {
interpreter.hasher.Reset()
}
interpreter.hasher.Write(data)
interpreter.hasher.Read(interpreter.hasherBuf[:])
evm := interpreter.evm
if evm.vmConfig.EnablePreimageRecording {
evm.StateDB.AddPreimage(interpreter.hasherBuf, data)
}
callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.hasherBuf[:]))
interpreter.intPool.put(offset, size)
return nil, nil
}
func opAddress(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetBytes(callContext.contract.Address().Bytes()))
return nil, nil
}
func opBalance(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.peek()
slot.Set(interpreter.evm.StateDB.GetBalance(common.BigToAddress(slot)))
return nil, nil
}
func opOrigin(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.evm.Origin.Bytes()))
return nil, nil
}
func opCaller(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetBytes(callContext.contract.Caller().Bytes()))
return nil, nil
}
func opCallValue(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().Set(callContext.contract.value))
return nil, nil
}
func opCallDataLoad(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetBytes(getDataBig(callContext.contract.Input, callContext.stack.pop(), big32)))
return nil, nil
}
func opCallDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetInt64(int64(len(callContext.contract.Input))))
return nil, nil
}
func opCallDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.pop()
dataOffset = callContext.stack.pop()
length = callContext.stack.pop()
)
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), getDataBig(callContext.contract.Input, dataOffset, length))
interpreter.intPool.put(memOffset, dataOffset, length)
return nil, nil
}
func opReturnDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetUint64(uint64(len(interpreter.returnData))))
return nil, nil
}
func opReturnDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.pop()
dataOffset = callContext.stack.pop()
length = callContext.stack.pop()
end = interpreter.intPool.get().Add(dataOffset, length)
)
defer interpreter.intPool.put(memOffset, dataOffset, length, end)
if !end.IsUint64() || uint64(len(interpreter.returnData)) < end.Uint64() {
return nil, ErrReturnDataOutOfBounds
}
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), interpreter.returnData[dataOffset.Uint64():end.Uint64()])
return nil, nil
}
func opExtCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.peek()
slot.SetUint64(uint64(interpreter.evm.StateDB.GetCodeSize(common.BigToAddress(slot))))
return nil, nil
}
func opCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
l := interpreter.intPool.get().SetInt64(int64(len(callContext.contract.Code)))
callContext.stack.push(l)
return nil, nil
}
func opCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
memOffset = callContext.stack.pop()
codeOffset = callContext.stack.pop()
length = callContext.stack.pop()
)
codeCopy := getDataBig(callContext.contract.Code, codeOffset, length)
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy)
interpreter.intPool.put(memOffset, codeOffset, length)
return nil, nil
}
func opExtCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
addr = common.BigToAddress(callContext.stack.pop())
memOffset = callContext.stack.pop()
codeOffset = callContext.stack.pop()
length = callContext.stack.pop()
)
codeCopy := getDataBig(interpreter.evm.StateDB.GetCode(addr), codeOffset, length)
callContext.memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy)
interpreter.intPool.put(memOffset, codeOffset, length)
return nil, nil
}
// opExtCodeHash returns the code hash of a specified account.
// There are several cases when the function is called, while we can relay everything
// to `state.GetCodeHash` function to ensure the correctness.
// (1) Caller tries to get the code hash of a normal contract account, state
// should return the relative code hash and set it as the result.
//
// (2) Caller tries to get the code hash of a non-existent account, state should
// return common.Hash{} and zero will be set as the result.
//
// (3) Caller tries to get the code hash for an account without contract code,
// state should return emptyCodeHash(0xc5d246...) as the result.
//
// (4) Caller tries to get the code hash of a precompiled account, the result
// should be zero or emptyCodeHash.
//
// It is worth noting that in order to avoid unnecessary create and clean,
// all precompile accounts on mainnet have been transferred 1 wei, so the return
// here should be emptyCodeHash.
// If the precompile account is not transferred any amount on a private or
// customized chain, the return value will be zero.
//
// (5) Caller tries to get the code hash for an account which is marked as suicided
// in the current transaction, the code hash of this account should be returned.
//
// (6) Caller tries to get the code hash for an account which is marked as deleted,
// this account should be regarded as a non-existent account and zero should be returned.
func opExtCodeHash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
slot := callContext.stack.peek()
address := common.BigToAddress(slot)
if interpreter.evm.StateDB.Empty(address) {
slot.SetUint64(0)
} else {
slot.SetBytes(interpreter.evm.StateDB.GetCodeHash(address).Bytes())
}
return nil, nil
}
func opGasprice(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().Set(interpreter.evm.GasPrice))
return nil, nil
}
func opBlockhash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
num := callContext.stack.pop()
n := interpreter.intPool.get().Sub(interpreter.evm.BlockNumber, common.Big257)
if num.Cmp(n) > 0 && num.Cmp(interpreter.evm.BlockNumber) < 0 {
callContext.stack.push(interpreter.evm.GetHash(num.Uint64()).Big())
} else {
callContext.stack.push(interpreter.intPool.getZero())
}
interpreter.intPool.put(num, n)
return nil, nil
}
func opCoinbase(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.evm.Coinbase.Bytes()))
return nil, nil
}
func opTimestamp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.Time)))
return nil, nil
}
func opNumber(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.BlockNumber)))
return nil, nil
}
func opDifficulty(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.Difficulty)))
return nil, nil
}
func opGasLimit(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(math.U256(interpreter.intPool.get().SetUint64(interpreter.evm.GasLimit)))
return nil, nil
}
func opPop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
interpreter.intPool.putOne(callContext.stack.pop())
return nil, nil
}
func opMload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
v := callContext.stack.peek()
offset := v.Int64()
v.SetBytes(callContext.memory.GetPtr(offset, 32))
return nil, nil
}
func opMstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// pop value of the stack
mStart, val := callContext.stack.pop(), callContext.stack.pop()
callContext.memory.Set32(mStart.Uint64(), val)
interpreter.intPool.put(mStart, val)
return nil, nil
}
func opMstore8(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
off, val := callContext.stack.pop().Int64(), callContext.stack.pop().Int64()
callContext.memory.store[off] = byte(val & 0xff)
return nil, nil
}
func opSload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
loc := callContext.stack.peek()
val := interpreter.evm.StateDB.GetState(callContext.contract.Address(), common.BigToHash(loc))
loc.SetBytes(val.Bytes())
return nil, nil
}
func opSstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
loc := common.BigToHash(callContext.stack.pop())
val := callContext.stack.pop()
interpreter.evm.StateDB.SetState(callContext.contract.Address(), loc, common.BigToHash(val))
interpreter.intPool.putOne(val)
return nil, nil
}
func opJump(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
pos := callContext.stack.pop()
if !callContext.contract.validJumpdest(pos) {
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
interpreter.intPool.putOne(pos)
return nil, nil
}
func opJumpi(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
pos, cond := callContext.stack.pop(), callContext.stack.pop()
if cond.Sign() != 0 {
if !callContext.contract.validJumpdest(pos) {
return nil, ErrInvalidJump
}
*pc = pos.Uint64()
} else {
*pc++
}
interpreter.intPool.put(pos, cond)
return nil, nil
}
func opJumpdest(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
return nil, nil
}
func opBeginSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
return nil, ErrInvalidSubroutineEntry
}
func opJumpSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
if len(callContext.rstack.data) >= 1023 {
return nil, ErrReturnStackExceeded
}
pos := callContext.stack.pop()
if !pos.IsUint64() {
return nil, ErrInvalidJump
}
posU64 := pos.Uint64()
if !callContext.contract.validJumpSubdest(posU64) {
return nil, ErrInvalidJump
}
callContext.rstack.push(*pc)
*pc = posU64 + 1
interpreter.intPool.put(pos)
return nil, nil
}
func opReturnSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
if len(callContext.rstack.data) == 0 {
return nil, ErrInvalidRetsub
}
// Other than the check that the return stack is not empty, there is no
// need to validate the pc from 'returns', since we only ever push valid
//values onto it via jumpsub.
*pc = callContext.rstack.pop() + 1
return nil, nil
}
func opPc(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetUint64(*pc))
return nil, nil
}
func opMsize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetInt64(int64(callContext.memory.Len())))
return nil, nil
}
func opGas(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.push(interpreter.intPool.get().SetUint64(callContext.contract.Gas))
return nil, nil
}
func opCreate(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
value = callContext.stack.pop()
offset, size = callContext.stack.pop(), callContext.stack.pop()
input = callContext.memory.GetCopy(offset.Int64(), size.Int64())
gas = callContext.contract.Gas
)
if interpreter.evm.chainRules.IsEIP150 {
gas -= gas / 64
}
callContext.contract.UseGas(gas)
res, addr, returnGas, suberr := interpreter.evm.Create(callContext.contract, input, gas, value)
// Push item on the stack based on the returned error. If the ruleset is
// homestead we must check for CodeStoreOutOfGasError (homestead only
// rule) and treat as an error, if the ruleset is frontier we must
// ignore this error and pretend the operation was successful.
if interpreter.evm.chainRules.IsHomestead && suberr == ErrCodeStoreOutOfGas {
callContext.stack.push(interpreter.intPool.getZero())
} else if suberr != nil && suberr != ErrCodeStoreOutOfGas {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetBytes(addr.Bytes()))
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(value, offset, size)
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCreate2(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
endowment = callContext.stack.pop()
offset, size = callContext.stack.pop(), callContext.stack.pop()
salt = callContext.stack.pop()
input = callContext.memory.GetCopy(offset.Int64(), size.Int64())
gas = callContext.contract.Gas
)
// Apply EIP150
gas -= gas / 64
callContext.contract.UseGas(gas)
res, addr, returnGas, suberr := interpreter.evm.Create2(callContext.contract, input, gas, endowment, salt)
// Push item on the stack based on the returned error.
if suberr != nil {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetBytes(addr.Bytes()))
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(endowment, offset, size, salt)
if suberr == ErrExecutionReverted {
return res, nil
}
return nil, nil
}
func opCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas in interpreter.evm.callGasTemp.
interpreter.intPool.putOne(callContext.stack.pop())
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
toAddr := common.BigToAddress(addr)
value = math.U256(value)
// Get the arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64())
if value.Sign() != 0 {
gas += params.CallStipend
}
ret, returnGas, err := interpreter.evm.Call(callContext.contract, toAddr, args, gas, value)
if err != nil {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetUint64(1))
}
if err == nil || err == ErrExecutionReverted {
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
return ret, nil
}
func opCallCode(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
interpreter.intPool.putOne(callContext.stack.pop())
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, value, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
toAddr := common.BigToAddress(addr)
value = math.U256(value)
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64())
if value.Sign() != 0 {
gas += params.CallStipend
}
ret, returnGas, err := interpreter.evm.CallCode(callContext.contract, toAddr, args, gas, value)
if err != nil {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetUint64(1))
}
if err == nil || err == ErrExecutionReverted {
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
return ret, nil
}
func opDelegateCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
interpreter.intPool.putOne(callContext.stack.pop())
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
toAddr := common.BigToAddress(addr)
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64())
ret, returnGas, err := interpreter.evm.DelegateCall(callContext.contract, toAddr, args, gas)
if err != nil {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetUint64(1))
}
if err == nil || err == ErrExecutionReverted {
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(addr, inOffset, inSize, retOffset, retSize)
return ret, nil
}
func opStaticCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
// Pop gas. The actual gas is in interpreter.evm.callGasTemp.
interpreter.intPool.putOne(callContext.stack.pop())
gas := interpreter.evm.callGasTemp
// Pop other call parameters.
addr, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop()
toAddr := common.BigToAddress(addr)
// Get arguments from the memory.
args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64())
ret, returnGas, err := interpreter.evm.StaticCall(callContext.contract, toAddr, args, gas)
if err != nil {
callContext.stack.push(interpreter.intPool.getZero())
} else {
callContext.stack.push(interpreter.intPool.get().SetUint64(1))
}
if err == nil || err == ErrExecutionReverted {
callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
callContext.contract.Gas += returnGas
interpreter.intPool.put(addr, inOffset, inSize, retOffset, retSize)
return ret, nil
}
func opReturn(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.pop(), callContext.stack.pop()
ret := callContext.memory.GetPtr(offset.Int64(), size.Int64())
interpreter.intPool.put(offset, size)
return ret, nil
}
func opRevert(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
offset, size := callContext.stack.pop(), callContext.stack.pop()
ret := callContext.memory.GetPtr(offset.Int64(), size.Int64())
interpreter.intPool.put(offset, size)
return ret, nil
}
func opStop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
return nil, nil
}
func opSuicide(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
balance := interpreter.evm.StateDB.GetBalance(callContext.contract.Address())
interpreter.evm.StateDB.AddBalance(common.BigToAddress(callContext.stack.pop()), balance)
interpreter.evm.StateDB.Suicide(callContext.contract.Address())
return nil, nil
}
// following functions are used by the instruction jump table
// make log instruction function
func makeLog(size int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
topics := make([]common.Hash, size)
mStart, mSize := callContext.stack.pop(), callContext.stack.pop()
for i := 0; i < size; i++ {
topics[i] = common.BigToHash(callContext.stack.pop())
}
d := callContext.memory.GetCopy(mStart.Int64(), mSize.Int64())
interpreter.evm.StateDB.AddLog(&types.Log{
Address: callContext.contract.Address(),
Topics: topics,
Data: d,
// This is a non-consensus field, but assigned here because
// core/state doesn't know the current block number.
BlockNumber: interpreter.evm.BlockNumber.Uint64(),
})
interpreter.intPool.put(mStart, mSize)
return nil, nil
}
}
// opPush1 is a specialized version of pushN
func opPush1(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
var (
codeLen = uint64(len(callContext.contract.Code))
integer = interpreter.intPool.get()
)
*pc += 1
if *pc < codeLen {
callContext.stack.push(integer.SetUint64(uint64(callContext.contract.Code[*pc])))
} else {
callContext.stack.push(integer.SetUint64(0))
}
return nil, nil
}
// make push instruction function
func makePush(size uint64, pushByteSize int) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
codeLen := len(callContext.contract.Code)
startMin := codeLen
if int(*pc+1) < startMin {
startMin = int(*pc + 1)
}
endMin := codeLen
if startMin+pushByteSize < endMin {
endMin = startMin + pushByteSize
}
integer := interpreter.intPool.get()
callContext.stack.push(integer.SetBytes(common.RightPadBytes(callContext.contract.Code[startMin:endMin], pushByteSize)))
*pc += size
return nil, nil
}
}
// make dup instruction function
func makeDup(size int64) executionFunc {
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.dup(interpreter.intPool, int(size))
return nil, nil
}
}
// make swap instruction function
func makeSwap(size int64) executionFunc {
// switch n + 1 otherwise n would be swapped with n
size++
return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) {
callContext.stack.swap(int(size))
return nil, nil
}
}