go-pulse/crypto/bn256/constants.go
Jeffrey Wilcke 10a57fc3d4 consensus, core/*, params: metropolis preparation refactor
This commit is a preparation for the upcoming metropolis hardfork. It
prepares the state, core and vm packages such that integration with
metropolis becomes less of a hassle.

* Difficulty calculation requires header instead of individual
  parameters
* statedb.StartRecord renamed to statedb.Prepare and added Finalise
  method required by metropolis, which removes unwanted accounts from
  the state (i.e. selfdestruct)
* State keeps record of destructed objects (in addition to dirty
  objects)
* core/vm pre-compiles may now return errors
* core/vm pre-compiles gas check now take the full byte slice as argument
  instead of just the size
* core/vm now keeps several hard-fork instruction tables instead of a
  single instruction table and removes the need for hard-fork checks in
  the instructions
* core/vm contains a empty restruction function which is added in
  preparation of metropolis write-only mode operations
* Adds the bn256 curve
* Adds and sets the metropolis chain config block parameters (2^64-1)
2017-05-18 09:05:58 +02:00

45 lines
2.4 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime: 1868033³.
var u = bigFromBase10("4965661367192848881")
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}