go-pulse/whisper/whisperv6/message.go
Guillaume Ballet 367c329b88 whisper: remove linter warnings (#15972)
* whisper: fixes warnings from the code linter

* whisper: more non-API-breaking changes

The remaining lint errors are because of auto-generated
files and one is because an exported function has a non-
exported return type. Changing this would break the API,
and will be part of another commit for easier reversal.

* whisper: un-export NewSentMessage to please the linter

This is an API change, which is why it's in its own commit.
This change was initiated after the linter complained that
the returned type wasn't exported. I chose to un-export
the function instead of exporting the type, because that
type is an implementation detail that I would like to
change in the near future to make the code more
readable and with an increased coverage.

* whisper: update gencodec output after upgrading it to new lint standards
2018-01-26 13:45:10 +02:00

366 lines
11 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Contains the Whisper protocol Message element.
package whisperv6
import (
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
crand "crypto/rand"
"encoding/binary"
"errors"
"strconv"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/log"
)
// MessageParams specifies the exact way a message should be wrapped
// into an Envelope.
type MessageParams struct {
TTL uint32
Src *ecdsa.PrivateKey
Dst *ecdsa.PublicKey
KeySym []byte
Topic TopicType
WorkTime uint32
PoW float64
Payload []byte
Padding []byte
}
// SentMessage represents an end-user data packet to transmit through the
// Whisper protocol. These are wrapped into Envelopes that need not be
// understood by intermediate nodes, just forwarded.
type sentMessage struct {
Raw []byte
}
// ReceivedMessage represents a data packet to be received through the
// Whisper protocol.
type ReceivedMessage struct {
Raw []byte
Payload []byte
Padding []byte
Signature []byte
Salt []byte
PoW float64 // Proof of work as described in the Whisper spec
Sent uint32 // Time when the message was posted into the network
TTL uint32 // Maximum time to live allowed for the message
Src *ecdsa.PublicKey // Message recipient (identity used to decode the message)
Dst *ecdsa.PublicKey // Message recipient (identity used to decode the message)
Topic TopicType
SymKeyHash common.Hash // The Keccak256Hash of the key, associated with the Topic
EnvelopeHash common.Hash // Message envelope hash to act as a unique id
}
func isMessageSigned(flags byte) bool {
return (flags & signatureFlag) != 0
}
func (msg *ReceivedMessage) isSymmetricEncryption() bool {
return msg.SymKeyHash != common.Hash{}
}
func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
return msg.Dst != nil
}
// NewSentMessage creates and initializes a non-signed, non-encrypted Whisper message.
func newSentMessage(params *MessageParams) (*sentMessage, error) {
msg := sentMessage{}
msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
msg.Raw[0] = 0 // set all the flags to zero
err := msg.appendPadding(params)
if err != nil {
return nil, err
}
msg.Raw = append(msg.Raw, params.Payload...)
return &msg, nil
}
// getSizeOfLength returns the number of bytes necessary to encode the entire size padding (including these bytes)
func getSizeOfLength(b []byte) (sz int, err error) {
sz = intSize(len(b)) // first iteration
sz = intSize(len(b) + sz) // second iteration
if sz > 3 {
err = errors.New("oversized padding parameter")
}
return sz, err
}
// sizeOfIntSize returns minimal number of bytes necessary to encode an integer value
func intSize(i int) (s int) {
for s = 1; i >= 256; s++ {
i /= 256
}
return s
}
// appendPadding appends the pseudorandom padding bytes and sets the padding flag.
// The last byte contains the size of padding (thus, its size must not exceed 256).
func (msg *sentMessage) appendPadding(params *MessageParams) error {
rawSize := len(params.Payload) + 1
if params.Src != nil {
rawSize += signatureLength
}
if params.KeySym != nil {
rawSize += AESNonceLength
}
odd := rawSize % padSizeLimit
if len(params.Padding) != 0 {
padSize := len(params.Padding)
padLengthSize, err := getSizeOfLength(params.Padding)
if err != nil {
return err
}
totalPadSize := padSize + padLengthSize
buf := make([]byte, 8)
binary.LittleEndian.PutUint32(buf, uint32(totalPadSize))
buf = buf[:padLengthSize]
msg.Raw = append(msg.Raw, buf...)
msg.Raw = append(msg.Raw, params.Padding...)
msg.Raw[0] |= byte(padLengthSize) // number of bytes indicating the padding size
} else if odd != 0 {
totalPadSize := padSizeLimit - odd
if totalPadSize > 255 {
// this algorithm is only valid if padSizeLimit < 256.
// if padSizeLimit will ever change, please fix the algorithm
// (please see also ReceivedMessage.extractPadding() function).
panic("please fix the padding algorithm before releasing new version")
}
buf := make([]byte, totalPadSize)
_, err := crand.Read(buf[1:])
if err != nil {
return err
}
if totalPadSize > 6 && !validateSymmetricKey(buf) {
return errors.New("failed to generate random padding of size " + strconv.Itoa(totalPadSize))
}
buf[0] = byte(totalPadSize)
msg.Raw = append(msg.Raw, buf...)
msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size
}
return nil
}
// sign calculates and sets the cryptographic signature for the message,
// also setting the sign flag.
func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error {
if isMessageSigned(msg.Raw[0]) {
// this should not happen, but no reason to panic
log.Error("failed to sign the message: already signed")
return nil
}
msg.Raw[0] |= signatureFlag
hash := crypto.Keccak256(msg.Raw)
signature, err := crypto.Sign(hash, key)
if err != nil {
msg.Raw[0] &= ^signatureFlag // clear the flag
return err
}
msg.Raw = append(msg.Raw, signature...)
return nil
}
// encryptAsymmetric encrypts a message with a public key.
func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
if !ValidatePublicKey(key) {
return errors.New("invalid public key provided for asymmetric encryption")
}
encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), msg.Raw, nil, nil)
if err == nil {
msg.Raw = encrypted
}
return err
}
// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *sentMessage) encryptSymmetric(key []byte) (err error) {
if !validateSymmetricKey(key) {
return errors.New("invalid key provided for symmetric encryption")
}
block, err := aes.NewCipher(key)
if err != nil {
return err
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
return err
}
// never use more than 2^32 random nonces with a given key
salt := make([]byte, aesgcm.NonceSize())
_, err = crand.Read(salt)
if err != nil {
return err
} else if !validateSymmetricKey(salt) {
return errors.New("crypto/rand failed to generate salt")
}
msg.Raw = append(aesgcm.Seal(nil, salt, msg.Raw, nil), salt...)
return nil
}
// Wrap bundles the message into an Envelope to transmit over the network.
func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
if options.TTL == 0 {
options.TTL = DefaultTTL
}
if options.Src != nil {
if err = msg.sign(options.Src); err != nil {
return nil, err
}
}
if options.Dst != nil {
err = msg.encryptAsymmetric(options.Dst)
} else if options.KeySym != nil {
err = msg.encryptSymmetric(options.KeySym)
} else {
err = errors.New("unable to encrypt the message: neither symmetric nor assymmetric key provided")
}
if err != nil {
return nil, err
}
envelope = NewEnvelope(options.TTL, options.Topic, msg)
if err = envelope.Seal(options); err != nil {
return nil, err
}
return envelope, nil
}
// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *ReceivedMessage) decryptSymmetric(key []byte) error {
// In v6, symmetric messages are expected to contain the 12-byte
// "salt" at the end of the payload.
if len(msg.Raw) < AESNonceLength {
return errors.New("missing salt or invalid payload in symmetric message")
}
salt := msg.Raw[len(msg.Raw)-AESNonceLength:]
block, err := aes.NewCipher(key)
if err != nil {
return err
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
return err
}
if len(salt) != aesgcm.NonceSize() {
log.Error("decrypting the message", "AES salt size", len(salt))
return errors.New("wrong AES salt size")
}
decrypted, err := aesgcm.Open(nil, salt, msg.Raw[:len(msg.Raw)-AESNonceLength], nil)
if err != nil {
return err
}
msg.Raw = decrypted
msg.Salt = salt
return nil
}
// decryptAsymmetric decrypts an encrypted payload with a private key.
func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
decrypted, err := ecies.ImportECDSA(key).Decrypt(crand.Reader, msg.Raw, nil, nil)
if err == nil {
msg.Raw = decrypted
}
return err
}
// Validate checks the validity and extracts the fields in case of success
func (msg *ReceivedMessage) Validate() bool {
end := len(msg.Raw)
if end < 1 {
return false
}
if isMessageSigned(msg.Raw[0]) {
end -= signatureLength
if end <= 1 {
return false
}
msg.Signature = msg.Raw[end:]
msg.Src = msg.SigToPubKey()
if msg.Src == nil {
return false
}
}
padSize, ok := msg.extractPadding(end)
if !ok {
return false
}
msg.Payload = msg.Raw[1+padSize : end]
return true
}
// extractPadding extracts the padding from raw message.
// although we don't support sending messages with padding size
// exceeding 255 bytes, such messages are perfectly valid, and
// can be successfully decrypted.
func (msg *ReceivedMessage) extractPadding(end int) (int, bool) {
paddingSize := 0
sz := int(msg.Raw[0] & paddingMask) // number of bytes indicating the entire size of padding (including these bytes)
// could be zero -- it means no padding
if sz != 0 {
paddingSize = int(bytesToUintLittleEndian(msg.Raw[1 : 1+sz]))
if paddingSize < sz || paddingSize+1 > end {
return 0, false
}
msg.Padding = msg.Raw[1+sz : 1+paddingSize]
}
return paddingSize, true
}
// SigToPubKey returns the public key associated to the message's
// signature.
func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
defer func() { recover() }() // in case of invalid signature
pub, err := crypto.SigToPub(msg.hash(), msg.Signature)
if err != nil {
log.Error("failed to recover public key from signature", "err", err)
return nil
}
return pub
}
// hash calculates the SHA3 checksum of the message flags, payload and padding.
func (msg *ReceivedMessage) hash() []byte {
if isMessageSigned(msg.Raw[0]) {
sz := len(msg.Raw) - signatureLength
return crypto.Keccak256(msg.Raw[:sz])
}
return crypto.Keccak256(msg.Raw)
}