mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2024-12-26 05:17:19 +00:00
9b0af51386
* vendor: add github.com/btcsuite/btcd/btcec * crypto: add btcec fallback for sign/recover without cgo This commit adds a non-cgo fallback implementation of secp256k1 operations. * crypto, core/vm: remove wrappers for sha256, ripemd160
217 lines
6.1 KiB
Go
217 lines
6.1 KiB
Go
// Copyright (c) 2015-2016 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"errors"
|
|
"io"
|
|
)
|
|
|
|
var (
|
|
// ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
|
|
// during decryption. This happens because of either invalid private key or
|
|
// corrupt ciphertext.
|
|
ErrInvalidMAC = errors.New("invalid mac hash")
|
|
|
|
// errInputTooShort occurs when the input ciphertext to the Decrypt
|
|
// function is less than 134 bytes long.
|
|
errInputTooShort = errors.New("ciphertext too short")
|
|
|
|
// errUnsupportedCurve occurs when the first two bytes of the encrypted
|
|
// text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
|
|
errUnsupportedCurve = errors.New("unsupported curve")
|
|
|
|
errInvalidXLength = errors.New("invalid X length, must be 32")
|
|
errInvalidYLength = errors.New("invalid Y length, must be 32")
|
|
errInvalidPadding = errors.New("invalid PKCS#7 padding")
|
|
|
|
// 0x02CA = 714
|
|
ciphCurveBytes = [2]byte{0x02, 0xCA}
|
|
// 0x20 = 32
|
|
ciphCoordLength = [2]byte{0x00, 0x20}
|
|
)
|
|
|
|
// GenerateSharedSecret generates a shared secret based on a private key and a
|
|
// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
|
|
// RFC5903 Section 9 states we should only return x.
|
|
func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
|
|
x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
|
|
return x.Bytes()
|
|
}
|
|
|
|
// Encrypt encrypts data for the target public key using AES-256-CBC. It also
|
|
// generates a private key (the pubkey of which is also in the output). The only
|
|
// supported curve is secp256k1. The `structure' that it encodes everything into
|
|
// is:
|
|
//
|
|
// struct {
|
|
// // Initialization Vector used for AES-256-CBC
|
|
// IV [16]byte
|
|
// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
|
|
// // len_of_pubkeyY(2) + pubkeyY (curve = 714)
|
|
// PublicKey [70]byte
|
|
// // Cipher text
|
|
// Data []byte
|
|
// // HMAC-SHA-256 Message Authentication Code
|
|
// HMAC [32]byte
|
|
// }
|
|
//
|
|
// The primary aim is to ensure byte compatibility with Pyelliptic. Also, refer
|
|
// to section 5.8.1 of ANSI X9.63 for rationale on this format.
|
|
func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
|
|
ephemeral, err := NewPrivateKey(S256())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
|
|
derivedKey := sha512.Sum512(ecdhKey)
|
|
keyE := derivedKey[:32]
|
|
keyM := derivedKey[32:]
|
|
|
|
paddedIn := addPKCSPadding(in)
|
|
// IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
|
|
out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
|
|
iv := out[:aes.BlockSize]
|
|
if _, err = io.ReadFull(rand.Reader, iv); err != nil {
|
|
return nil, err
|
|
}
|
|
// start writing public key
|
|
pb := ephemeral.PubKey().SerializeUncompressed()
|
|
offset := aes.BlockSize
|
|
|
|
// curve and X length
|
|
copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
|
|
offset += 4
|
|
// X
|
|
copy(out[offset:offset+32], pb[1:33])
|
|
offset += 32
|
|
// Y length
|
|
copy(out[offset:offset+2], ciphCoordLength[:])
|
|
offset += 2
|
|
// Y
|
|
copy(out[offset:offset+32], pb[33:])
|
|
offset += 32
|
|
|
|
// start encryption
|
|
block, err := aes.NewCipher(keyE)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
mode := cipher.NewCBCEncrypter(block, iv)
|
|
mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
|
|
|
|
// start HMAC-SHA-256
|
|
hm := hmac.New(sha256.New, keyM)
|
|
hm.Write(out[:len(out)-sha256.Size]) // everything is hashed
|
|
copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
|
|
|
|
return out, nil
|
|
}
|
|
|
|
// Decrypt decrypts data that was encrypted using the Encrypt function.
|
|
func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
|
|
// IV + Curve params/X/Y + 1 block + HMAC-256
|
|
if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
|
|
return nil, errInputTooShort
|
|
}
|
|
|
|
// read iv
|
|
iv := in[:aes.BlockSize]
|
|
offset := aes.BlockSize
|
|
|
|
// start reading pubkey
|
|
if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
|
|
return nil, errUnsupportedCurve
|
|
}
|
|
offset += 2
|
|
|
|
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
|
|
return nil, errInvalidXLength
|
|
}
|
|
offset += 2
|
|
|
|
xBytes := in[offset : offset+32]
|
|
offset += 32
|
|
|
|
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
|
|
return nil, errInvalidYLength
|
|
}
|
|
offset += 2
|
|
|
|
yBytes := in[offset : offset+32]
|
|
offset += 32
|
|
|
|
pb := make([]byte, 65)
|
|
pb[0] = byte(0x04) // uncompressed
|
|
copy(pb[1:33], xBytes)
|
|
copy(pb[33:], yBytes)
|
|
// check if (X, Y) lies on the curve and create a Pubkey if it does
|
|
pubkey, err := ParsePubKey(pb, S256())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// check for cipher text length
|
|
if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
|
|
return nil, errInvalidPadding // not padded to 16 bytes
|
|
}
|
|
|
|
// read hmac
|
|
messageMAC := in[len(in)-sha256.Size:]
|
|
|
|
// generate shared secret
|
|
ecdhKey := GenerateSharedSecret(priv, pubkey)
|
|
derivedKey := sha512.Sum512(ecdhKey)
|
|
keyE := derivedKey[:32]
|
|
keyM := derivedKey[32:]
|
|
|
|
// verify mac
|
|
hm := hmac.New(sha256.New, keyM)
|
|
hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
|
|
expectedMAC := hm.Sum(nil)
|
|
if !hmac.Equal(messageMAC, expectedMAC) {
|
|
return nil, ErrInvalidMAC
|
|
}
|
|
|
|
// start decryption
|
|
block, err := aes.NewCipher(keyE)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
mode := cipher.NewCBCDecrypter(block, iv)
|
|
// same length as ciphertext
|
|
plaintext := make([]byte, len(in)-offset-sha256.Size)
|
|
mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
|
|
|
|
return removePKCSPadding(plaintext)
|
|
}
|
|
|
|
// Implement PKCS#7 padding with block size of 16 (AES block size).
|
|
|
|
// addPKCSPadding adds padding to a block of data
|
|
func addPKCSPadding(src []byte) []byte {
|
|
padding := aes.BlockSize - len(src)%aes.BlockSize
|
|
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
|
|
return append(src, padtext...)
|
|
}
|
|
|
|
// removePKCSPadding removes padding from data that was added with addPKCSPadding
|
|
func removePKCSPadding(src []byte) ([]byte, error) {
|
|
length := len(src)
|
|
padLength := int(src[length-1])
|
|
if padLength > aes.BlockSize || length < aes.BlockSize {
|
|
return nil, errInvalidPadding
|
|
}
|
|
|
|
return src[:length-padLength], nil
|
|
}
|