go-pulse/p2p/peer.go
Dan Laine 289c6c3b15
p2p: use slices package for sorting (#27494)
Co-authored-by: Felix Lange <fjl@twurst.com>
2023-06-19 07:48:12 +02:00

538 lines
14 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package p2p
import (
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/exp/slices"
)
var (
ErrShuttingDown = errors.New("shutting down")
)
const (
baseProtocolVersion = 5
baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 2 * 1024
snappyProtocolVersion = 5
pingInterval = 15 * time.Second
)
const (
// devp2p message codes
handshakeMsg = 0x00
discMsg = 0x01
pingMsg = 0x02
pongMsg = 0x03
)
// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
ID []byte // secp256k1 public key
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// PeerEventType is the type of peer events emitted by a p2p.Server
type PeerEventType string
const (
// PeerEventTypeAdd is the type of event emitted when a peer is added
// to a p2p.Server
PeerEventTypeAdd PeerEventType = "add"
// PeerEventTypeDrop is the type of event emitted when a peer is
// dropped from a p2p.Server
PeerEventTypeDrop PeerEventType = "drop"
// PeerEventTypeMsgSend is the type of event emitted when a
// message is successfully sent to a peer
PeerEventTypeMsgSend PeerEventType = "msgsend"
// PeerEventTypeMsgRecv is the type of event emitted when a
// message is received from a peer
PeerEventTypeMsgRecv PeerEventType = "msgrecv"
)
// PeerEvent is an event emitted when peers are either added or dropped from
// a p2p.Server or when a message is sent or received on a peer connection
type PeerEvent struct {
Type PeerEventType `json:"type"`
Peer enode.ID `json:"peer"`
Error string `json:"error,omitempty"`
Protocol string `json:"protocol,omitempty"`
MsgCode *uint64 `json:"msg_code,omitempty"`
MsgSize *uint32 `json:"msg_size,omitempty"`
LocalAddress string `json:"local,omitempty"`
RemoteAddress string `json:"remote,omitempty"`
}
// Peer represents a connected remote node.
type Peer struct {
rw *conn
running map[string]*protoRW
log log.Logger
created mclock.AbsTime
wg sync.WaitGroup
protoErr chan error
closed chan struct{}
disc chan DiscReason
// events receives message send / receive events if set
events *event.Feed
testPipe *MsgPipeRW // for testing
}
// NewPeer returns a peer for testing purposes.
func NewPeer(id enode.ID, name string, caps []Cap) *Peer {
// Generate a fake set of local protocols to match as running caps. Almost
// no fields needs to be meaningful here as we're only using it to cross-
// check with the "remote" caps array.
protos := make([]Protocol, len(caps))
for i, cap := range caps {
protos[i].Name = cap.Name
protos[i].Version = cap.Version
}
pipe, _ := net.Pipe()
node := enode.SignNull(new(enr.Record), id)
conn := &conn{fd: pipe, transport: nil, node: node, caps: caps, name: name}
peer := newPeer(log.Root(), conn, protos)
close(peer.closed) // ensures Disconnect doesn't block
return peer
}
// NewPeerPipe creates a peer for testing purposes.
// The message pipe given as the last parameter is closed when
// Disconnect is called on the peer.
func NewPeerPipe(id enode.ID, name string, caps []Cap, pipe *MsgPipeRW) *Peer {
p := NewPeer(id, name, caps)
p.testPipe = pipe
return p
}
// ID returns the node's public key.
func (p *Peer) ID() enode.ID {
return p.rw.node.ID()
}
// Node returns the peer's node descriptor.
func (p *Peer) Node() *enode.Node {
return p.rw.node
}
// Name returns an abbreviated form of the name
func (p *Peer) Name() string {
s := p.rw.name
if len(s) > 20 {
return s[:20] + "..."
}
return s
}
// Fullname returns the node name that the remote node advertised.
func (p *Peer) Fullname() string {
return p.rw.name
}
// Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap {
// TODO: maybe return copy
return p.rw.caps
}
// RunningCap returns true if the peer is actively connected using any of the
// enumerated versions of a specific protocol, meaning that at least one of the
// versions is supported by both this node and the peer p.
func (p *Peer) RunningCap(protocol string, versions []uint) bool {
if proto, ok := p.running[protocol]; ok {
for _, ver := range versions {
if proto.Version == ver {
return true
}
}
}
return false
}
// RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr {
return p.rw.fd.RemoteAddr()
}
// LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr {
return p.rw.fd.LocalAddr()
}
// Disconnect terminates the peer connection with the given reason.
// It returns immediately and does not wait until the connection is closed.
func (p *Peer) Disconnect(reason DiscReason) {
if p.testPipe != nil {
p.testPipe.Close()
}
select {
case p.disc <- reason:
case <-p.closed:
}
}
// String implements fmt.Stringer.
func (p *Peer) String() string {
id := p.ID()
return fmt.Sprintf("Peer %x %v", id[:8], p.RemoteAddr())
}
// Inbound returns true if the peer is an inbound connection
func (p *Peer) Inbound() bool {
return p.rw.is(inboundConn)
}
func newPeer(log log.Logger, conn *conn, protocols []Protocol) *Peer {
protomap := matchProtocols(protocols, conn.caps, conn)
p := &Peer{
rw: conn,
running: protomap,
created: mclock.Now(),
disc: make(chan DiscReason),
protoErr: make(chan error, len(protomap)+1), // protocols + pingLoop
closed: make(chan struct{}),
log: log.New("id", conn.node.ID(), "conn", conn.flags),
}
return p
}
func (p *Peer) Log() log.Logger {
return p.log
}
func (p *Peer) run() (remoteRequested bool, err error) {
var (
writeStart = make(chan struct{}, 1)
writeErr = make(chan error, 1)
readErr = make(chan error, 1)
reason DiscReason // sent to the peer
)
p.wg.Add(2)
go p.readLoop(readErr)
go p.pingLoop()
// Start all protocol handlers.
writeStart <- struct{}{}
p.startProtocols(writeStart, writeErr)
// Wait for an error or disconnect.
loop:
for {
select {
case err = <-writeErr:
// A write finished. Allow the next write to start if
// there was no error.
if err != nil {
reason = DiscNetworkError
break loop
}
writeStart <- struct{}{}
case err = <-readErr:
if r, ok := err.(DiscReason); ok {
remoteRequested = true
reason = r
} else {
reason = DiscNetworkError
}
break loop
case err = <-p.protoErr:
reason = discReasonForError(err)
break loop
case err = <-p.disc:
reason = discReasonForError(err)
break loop
}
}
close(p.closed)
p.rw.close(reason)
p.wg.Wait()
return remoteRequested, err
}
func (p *Peer) pingLoop() {
ping := time.NewTimer(pingInterval)
defer p.wg.Done()
defer ping.Stop()
for {
select {
case <-ping.C:
if err := SendItems(p.rw, pingMsg); err != nil {
p.protoErr <- err
return
}
ping.Reset(pingInterval)
case <-p.closed:
return
}
}
}
func (p *Peer) readLoop(errc chan<- error) {
defer p.wg.Done()
for {
msg, err := p.rw.ReadMsg()
if err != nil {
errc <- err
return
}
msg.ReceivedAt = time.Now()
if err = p.handle(msg); err != nil {
errc <- err
return
}
}
}
func (p *Peer) handle(msg Msg) error {
switch {
case msg.Code == pingMsg:
msg.Discard()
go SendItems(p.rw, pongMsg)
case msg.Code == discMsg:
// This is the last message. We don't need to discard or
// check errors because, the connection will be closed after it.
var m struct{ R DiscReason }
rlp.Decode(msg.Payload, &m)
return m.R
case msg.Code < baseProtocolLength:
// ignore other base protocol messages
return msg.Discard()
default:
// it's a subprotocol message
proto, err := p.getProto(msg.Code)
if err != nil {
return fmt.Errorf("msg code out of range: %v", msg.Code)
}
if metrics.Enabled {
m := fmt.Sprintf("%s/%s/%d/%#02x", ingressMeterName, proto.Name, proto.Version, msg.Code-proto.offset)
metrics.GetOrRegisterMeter(m, nil).Mark(int64(msg.meterSize))
metrics.GetOrRegisterMeter(m+"/packets", nil).Mark(1)
}
select {
case proto.in <- msg:
return nil
case <-p.closed:
return io.EOF
}
}
return nil
}
func countMatchingProtocols(protocols []Protocol, caps []Cap) int {
n := 0
for _, cap := range caps {
for _, proto := range protocols {
if proto.Name == cap.Name && proto.Version == cap.Version {
n++
}
}
}
return n
}
// matchProtocols creates structures for matching named subprotocols.
func matchProtocols(protocols []Protocol, caps []Cap, rw MsgReadWriter) map[string]*protoRW {
slices.SortFunc(caps, Cap.Less)
offset := baseProtocolLength
result := make(map[string]*protoRW)
outer:
for _, cap := range caps {
for _, proto := range protocols {
if proto.Name == cap.Name && proto.Version == cap.Version {
// If an old protocol version matched, revert it
if old := result[cap.Name]; old != nil {
offset -= old.Length
}
// Assign the new match
result[cap.Name] = &protoRW{Protocol: proto, offset: offset, in: make(chan Msg), w: rw}
offset += proto.Length
continue outer
}
}
}
return result
}
func (p *Peer) startProtocols(writeStart <-chan struct{}, writeErr chan<- error) {
p.wg.Add(len(p.running))
for _, proto := range p.running {
proto := proto
proto.closed = p.closed
proto.wstart = writeStart
proto.werr = writeErr
var rw MsgReadWriter = proto
if p.events != nil {
rw = newMsgEventer(rw, p.events, p.ID(), proto.Name, p.Info().Network.RemoteAddress, p.Info().Network.LocalAddress)
}
p.log.Trace(fmt.Sprintf("Starting protocol %s/%d", proto.Name, proto.Version))
go func() {
defer p.wg.Done()
err := proto.Run(p, rw)
if err == nil {
p.log.Trace(fmt.Sprintf("Protocol %s/%d returned", proto.Name, proto.Version))
err = errProtocolReturned
} else if !errors.Is(err, io.EOF) {
p.log.Trace(fmt.Sprintf("Protocol %s/%d failed", proto.Name, proto.Version), "err", err)
}
p.protoErr <- err
}()
}
}
// getProto finds the protocol responsible for handling
// the given message code.
func (p *Peer) getProto(code uint64) (*protoRW, error) {
for _, proto := range p.running {
if code >= proto.offset && code < proto.offset+proto.Length {
return proto, nil
}
}
return nil, newPeerError(errInvalidMsgCode, "%d", code)
}
type protoRW struct {
Protocol
in chan Msg // receives read messages
closed <-chan struct{} // receives when peer is shutting down
wstart <-chan struct{} // receives when write may start
werr chan<- error // for write results
offset uint64
w MsgWriter
}
func (rw *protoRW) WriteMsg(msg Msg) (err error) {
if msg.Code >= rw.Length {
return newPeerError(errInvalidMsgCode, "not handled")
}
msg.meterCap = rw.cap()
msg.meterCode = msg.Code
msg.Code += rw.offset
select {
case <-rw.wstart:
err = rw.w.WriteMsg(msg)
// Report write status back to Peer.run. It will initiate
// shutdown if the error is non-nil and unblock the next write
// otherwise. The calling protocol code should exit for errors
// as well but we don't want to rely on that.
rw.werr <- err
case <-rw.closed:
err = ErrShuttingDown
}
return err
}
func (rw *protoRW) ReadMsg() (Msg, error) {
select {
case msg := <-rw.in:
msg.Code -= rw.offset
return msg, nil
case <-rw.closed:
return Msg{}, io.EOF
}
}
// PeerInfo represents a short summary of the information known about a connected
// peer. Sub-protocol independent fields are contained and initialized here, with
// protocol specifics delegated to all connected sub-protocols.
type PeerInfo struct {
ENR string `json:"enr,omitempty"` // Ethereum Node Record
Enode string `json:"enode"` // Node URL
ID string `json:"id"` // Unique node identifier
Name string `json:"name"` // Name of the node, including client type, version, OS, custom data
Caps []string `json:"caps"` // Protocols advertised by this peer
Network struct {
LocalAddress string `json:"localAddress"` // Local endpoint of the TCP data connection
RemoteAddress string `json:"remoteAddress"` // Remote endpoint of the TCP data connection
Inbound bool `json:"inbound"`
Trusted bool `json:"trusted"`
Static bool `json:"static"`
} `json:"network"`
Protocols map[string]interface{} `json:"protocols"` // Sub-protocol specific metadata fields
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *Peer) Info() *PeerInfo {
// Gather the protocol capabilities
var caps []string
for _, cap := range p.Caps() {
caps = append(caps, cap.String())
}
// Assemble the generic peer metadata
info := &PeerInfo{
Enode: p.Node().URLv4(),
ID: p.ID().String(),
Name: p.Fullname(),
Caps: caps,
Protocols: make(map[string]interface{}, len(p.running)),
}
if p.Node().Seq() > 0 {
info.ENR = p.Node().String()
}
info.Network.LocalAddress = p.LocalAddr().String()
info.Network.RemoteAddress = p.RemoteAddr().String()
info.Network.Inbound = p.rw.is(inboundConn)
info.Network.Trusted = p.rw.is(trustedConn)
info.Network.Static = p.rw.is(staticDialedConn)
// Gather all the running protocol infos
for _, proto := range p.running {
protoInfo := interface{}("unknown")
if query := proto.Protocol.PeerInfo; query != nil {
if metadata := query(p.ID()); metadata != nil {
protoInfo = metadata
} else {
protoInfo = "handshake"
}
}
info.Protocols[proto.Name] = protoInfo
}
return info
}