go-pulse/core/state/snapshot/conversion.go
Martin Holst Swende 76eed9e50d
snapshotter/tests: verify snapdb post-state against trie (#20812)
* core/state/snapshot: basic trie-to-hash implementation

* tests: validate snapshot after test

* core/state/snapshot: fix review concerns
2020-03-31 10:25:41 +02:00

115 lines
3.3 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// conversionAccount is used for converting between full and slim format. When
// doing this, we can consider 'balance' as a byte array, as it has already
// been converted from big.Int into an rlp-byteslice.
type conversionAccount struct {
Nonce uint64
Balance []byte
Root []byte
CodeHash []byte
}
// SlimToFull converts data on the 'slim RLP' format into the full RLP-format
func SlimToFull(data []byte) ([]byte, error) {
acc := &conversionAccount{}
if err := rlp.DecodeBytes(data, acc); err != nil {
return nil, err
}
if len(acc.Root) == 0 {
acc.Root = emptyRoot[:]
}
if len(acc.CodeHash) == 0 {
acc.CodeHash = emptyCode[:]
}
fullData, err := rlp.EncodeToBytes(acc)
if err != nil {
return nil, err
}
return fullData, nil
}
// trieKV represents a trie key-value pair
type trieKV struct {
key common.Hash
value []byte
}
type trieGeneratorFn func(in chan (trieKV), out chan (common.Hash))
// GenerateTrieRoot takes an account iterator and reproduces the root hash.
func GenerateTrieRoot(it AccountIterator) common.Hash {
return generateTrieRoot(it, stdGenerate)
}
func generateTrieRoot(it AccountIterator, generatorFn trieGeneratorFn) common.Hash {
var (
in = make(chan trieKV) // chan to pass leaves
out = make(chan common.Hash) // chan to collect result
wg sync.WaitGroup
)
wg.Add(1)
go func() {
generatorFn(in, out)
wg.Done()
}()
// Feed leaves
start := time.Now()
logged := time.Now()
accounts := 0
for it.Next() {
slimData := it.Account()
fullData, _ := SlimToFull(slimData)
l := trieKV{it.Hash(), fullData}
in <- l
if time.Since(logged) > 8*time.Second {
log.Info("Generating trie hash from snapshot",
"at", l.key, "accounts", accounts, "elapsed", time.Since(start))
logged = time.Now()
}
accounts++
}
close(in)
result := <-out
log.Info("Generated trie hash from snapshot", "accounts", accounts, "elapsed", time.Since(start))
wg.Wait()
return result
}
// stdGenerate is a very basic hexary trie builder which uses the same Trie
// as the rest of geth, with no enhancements or optimizations
func stdGenerate(in chan (trieKV), out chan (common.Hash)) {
t, _ := trie.New(common.Hash{}, trie.NewDatabase(memorydb.New()))
for leaf := range in {
t.TryUpdate(leaf.key[:], leaf.value)
}
out <- t.Hash()
}