go-pulse/p2p/rlpx/rlpx.go
Felix Lange 7194c847b6
p2p/rlpx: reduce allocation and syscalls (#22899)
This change significantly improves the performance of RLPx message reads
and writes. In the previous implementation, reading and writing of
message frames performed multiple reads and writes on the underlying
network connection, and allocated a new []byte buffer for every read.

In the new implementation, reads and writes re-use buffers, and perform
much fewer system calls on the underlying connection. This doubles the
theoretically achievable throughput on a single connection, as shown by
the benchmark result:

    name             old speed      new speed       delta
    Throughput-8     70.3MB/s ± 0%  155.4MB/s ± 0%  +121.11%  (p=0.000 n=9+8)

The change also removes support for the legacy, pre-EIP-8 handshake encoding.
As of May 2021, no actively maintained client sends this format.
2021-05-27 10:19:13 +02:00

677 lines
19 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package rlpx implements the RLPx transport protocol.
package rlpx
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
mrand "math/rand"
"net"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/rlp"
"github.com/golang/snappy"
"golang.org/x/crypto/sha3"
)
// Conn is an RLPx network connection. It wraps a low-level network connection. The
// underlying connection should not be used for other activity when it is wrapped by Conn.
//
// Before sending messages, a handshake must be performed by calling the Handshake method.
// This type is not generally safe for concurrent use, but reading and writing of messages
// may happen concurrently after the handshake.
type Conn struct {
dialDest *ecdsa.PublicKey
conn net.Conn
session *sessionState
// These are the buffers for snappy compression.
// Compression is enabled if they are non-nil.
snappyReadBuffer []byte
snappyWriteBuffer []byte
}
// sessionState contains the session keys.
type sessionState struct {
enc cipher.Stream
dec cipher.Stream
egressMAC hashMAC
ingressMAC hashMAC
rbuf readBuffer
wbuf writeBuffer
}
// hashMAC holds the state of the RLPx v4 MAC contraption.
type hashMAC struct {
cipher cipher.Block
hash hash.Hash
aesBuffer [16]byte
hashBuffer [32]byte
seedBuffer [32]byte
}
func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC {
m := hashMAC{cipher: cipher, hash: h}
if cipher.BlockSize() != len(m.aesBuffer) {
panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize()))
}
if h.Size() != len(m.hashBuffer) {
panic(fmt.Errorf("invalid MAC digest size %d", h.Size()))
}
return m
}
// NewConn wraps the given network connection. If dialDest is non-nil, the connection
// behaves as the initiator during the handshake.
func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
return &Conn{
dialDest: dialDest,
conn: conn,
}
}
// SetSnappy enables or disables snappy compression of messages. This is usually called
// after the devp2p Hello message exchange when the negotiated version indicates that
// compression is available on both ends of the connection.
func (c *Conn) SetSnappy(snappy bool) {
if snappy {
c.snappyReadBuffer = []byte{}
c.snappyWriteBuffer = []byte{}
} else {
c.snappyReadBuffer = nil
c.snappyWriteBuffer = nil
}
}
// SetReadDeadline sets the deadline for all future read operations.
func (c *Conn) SetReadDeadline(time time.Time) error {
return c.conn.SetReadDeadline(time)
}
// SetWriteDeadline sets the deadline for all future write operations.
func (c *Conn) SetWriteDeadline(time time.Time) error {
return c.conn.SetWriteDeadline(time)
}
// SetDeadline sets the deadline for all future read and write operations.
func (c *Conn) SetDeadline(time time.Time) error {
return c.conn.SetDeadline(time)
}
// Read reads a message from the connection.
// The returned data buffer is valid until the next call to Read.
func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
if c.session == nil {
panic("can't ReadMsg before handshake")
}
frame, err := c.session.readFrame(c.conn)
if err != nil {
return 0, nil, 0, err
}
code, data, err = rlp.SplitUint64(frame)
if err != nil {
return 0, nil, 0, fmt.Errorf("invalid message code: %v", err)
}
wireSize = len(data)
// If snappy is enabled, verify and decompress message.
if c.snappyReadBuffer != nil {
var actualSize int
actualSize, err = snappy.DecodedLen(data)
if err != nil {
return code, nil, 0, err
}
if actualSize > maxUint24 {
return code, nil, 0, errPlainMessageTooLarge
}
c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize)
data, err = snappy.Decode(c.snappyReadBuffer, data)
}
return code, data, wireSize, err
}
func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) {
h.rbuf.reset()
// Read the frame header.
header, err := h.rbuf.read(conn, 32)
if err != nil {
return nil, err
}
// Verify header MAC.
wantHeaderMAC := h.ingressMAC.computeHeader(header[:16])
if !hmac.Equal(wantHeaderMAC, header[16:]) {
return nil, errors.New("bad header MAC")
}
// Decrypt the frame header to get the frame size.
h.dec.XORKeyStream(header[:16], header[:16])
fsize := readUint24(header[:16])
// Frame size rounded up to 16 byte boundary for padding.
rsize := fsize
if padding := fsize % 16; padding > 0 {
rsize += 16 - padding
}
// Read the frame content.
frame, err := h.rbuf.read(conn, int(rsize))
if err != nil {
return nil, err
}
// Validate frame MAC.
frameMAC, err := h.rbuf.read(conn, 16)
if err != nil {
return nil, err
}
wantFrameMAC := h.ingressMAC.computeFrame(frame)
if !hmac.Equal(wantFrameMAC, frameMAC) {
return nil, errors.New("bad frame MAC")
}
// Decrypt the frame data.
h.dec.XORKeyStream(frame, frame)
return frame[:fsize], nil
}
// Write writes a message to the connection.
//
// Write returns the written size of the message data. This may be less than or equal to
// len(data) depending on whether snappy compression is enabled.
func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
if c.session == nil {
panic("can't WriteMsg before handshake")
}
if len(data) > maxUint24 {
return 0, errPlainMessageTooLarge
}
if c.snappyWriteBuffer != nil {
// Ensure the buffer has sufficient size.
// Package snappy will allocate its own buffer if the provided
// one is smaller than MaxEncodedLen.
c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data)))
data = snappy.Encode(c.snappyWriteBuffer, data)
}
wireSize := uint32(len(data))
err := c.session.writeFrame(c.conn, code, data)
return wireSize, err
}
func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error {
h.wbuf.reset()
// Write header.
fsize := rlp.IntSize(code) + len(data)
if fsize > maxUint24 {
return errPlainMessageTooLarge
}
header := h.wbuf.appendZero(16)
putUint24(uint32(fsize), header)
copy(header[3:], zeroHeader)
h.enc.XORKeyStream(header, header)
// Write header MAC.
h.wbuf.Write(h.egressMAC.computeHeader(header))
// Encode and encrypt the frame data.
offset := len(h.wbuf.data)
h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code)
h.wbuf.Write(data)
if padding := fsize % 16; padding > 0 {
h.wbuf.appendZero(16 - padding)
}
framedata := h.wbuf.data[offset:]
h.enc.XORKeyStream(framedata, framedata)
// Write frame MAC.
h.wbuf.Write(h.egressMAC.computeFrame(framedata))
_, err := conn.Write(h.wbuf.data)
return err
}
// computeHeader computes the MAC of a frame header.
func (m *hashMAC) computeHeader(header []byte) []byte {
sum1 := m.hash.Sum(m.hashBuffer[:0])
return m.compute(sum1, header)
}
// computeFrame computes the MAC of framedata.
func (m *hashMAC) computeFrame(framedata []byte) []byte {
m.hash.Write(framedata)
seed := m.hash.Sum(m.seedBuffer[:0])
return m.compute(seed, seed[:16])
}
// compute computes the MAC of a 16-byte 'seed'.
//
// To do this, it encrypts the current value of the hash state, then XORs the ciphertext
// with seed. The obtained value is written back into the hash state and hash output is
// taken again. The first 16 bytes of the resulting sum are the MAC value.
//
// This MAC construction is a horrible, legacy thing.
func (m *hashMAC) compute(sum1, seed []byte) []byte {
if len(seed) != len(m.aesBuffer) {
panic("invalid MAC seed")
}
m.cipher.Encrypt(m.aesBuffer[:], sum1)
for i := range m.aesBuffer {
m.aesBuffer[i] ^= seed[i]
}
m.hash.Write(m.aesBuffer[:])
sum2 := m.hash.Sum(m.hashBuffer[:0])
return sum2[:16]
}
// Handshake performs the handshake. This must be called before any data is written
// or read from the connection.
func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
var (
sec Secrets
err error
h handshakeState
)
if c.dialDest != nil {
sec, err = h.runInitiator(c.conn, prv, c.dialDest)
} else {
sec, err = h.runRecipient(c.conn, prv)
}
if err != nil {
return nil, err
}
c.InitWithSecrets(sec)
c.session.rbuf = h.rbuf
c.session.wbuf = h.wbuf
return sec.remote, err
}
// InitWithSecrets injects connection secrets as if a handshake had
// been performed. This cannot be called after the handshake.
func (c *Conn) InitWithSecrets(sec Secrets) {
if c.session != nil {
panic("can't handshake twice")
}
macc, err := aes.NewCipher(sec.MAC)
if err != nil {
panic("invalid MAC secret: " + err.Error())
}
encc, err := aes.NewCipher(sec.AES)
if err != nil {
panic("invalid AES secret: " + err.Error())
}
// we use an all-zeroes IV for AES because the key used
// for encryption is ephemeral.
iv := make([]byte, encc.BlockSize())
c.session = &sessionState{
enc: cipher.NewCTR(encc, iv),
dec: cipher.NewCTR(encc, iv),
egressMAC: newHashMAC(macc, sec.EgressMAC),
ingressMAC: newHashMAC(macc, sec.IngressMAC),
}
}
// Close closes the underlying network connection.
func (c *Conn) Close() error {
return c.conn.Close()
}
// Constants for the handshake.
const (
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = crypto.SignatureLength // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
)
var (
// this is used in place of actual frame header data.
// TODO: replace this when Msg contains the protocol type code.
zeroHeader = []byte{0xC2, 0x80, 0x80}
// errPlainMessageTooLarge is returned if a decompressed message length exceeds
// the allowed 24 bits (i.e. length >= 16MB).
errPlainMessageTooLarge = errors.New("message length >= 16MB")
)
// Secrets represents the connection secrets which are negotiated during the handshake.
type Secrets struct {
AES, MAC []byte
EgressMAC, IngressMAC hash.Hash
remote *ecdsa.PublicKey
}
// handshakeState contains the state of the encryption handshake.
type handshakeState struct {
initiator bool
remote *ecies.PublicKey // remote-pubk
initNonce, respNonce []byte // nonce
randomPrivKey *ecies.PrivateKey // ecdhe-random
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
rbuf readBuffer
wbuf writeBuffer
}
// RLPx v4 handshake auth (defined in EIP-8).
type authMsgV4 struct {
Signature [sigLen]byte
InitiatorPubkey [pubLen]byte
Nonce [shaLen]byte
Version uint
// Ignore additional fields (forward-compatibility)
Rest []rlp.RawValue `rlp:"tail"`
}
// RLPx v4 handshake response (defined in EIP-8).
type authRespV4 struct {
RandomPubkey [pubLen]byte
Nonce [shaLen]byte
Version uint
// Ignore additional fields (forward-compatibility)
Rest []rlp.RawValue `rlp:"tail"`
}
// runRecipient negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// prv is the local client's private key.
func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
authMsg := new(authMsgV4)
authPacket, err := h.readMsg(authMsg, prv, conn)
if err != nil {
return s, err
}
if err := h.handleAuthMsg(authMsg, prv); err != nil {
return s, err
}
authRespMsg, err := h.makeAuthResp()
if err != nil {
return s, err
}
authRespPacket, err := h.sealEIP8(authRespMsg)
if err != nil {
return s, err
}
if _, err = conn.Write(authRespPacket); err != nil {
return s, err
}
return h.secrets(authPacket, authRespPacket)
}
func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
// Import the remote identity.
rpub, err := importPublicKey(msg.InitiatorPubkey[:])
if err != nil {
return err
}
h.initNonce = msg.Nonce[:]
h.remote = rpub
// Generate random keypair for ECDH.
// If a private key is already set, use it instead of generating one (for testing).
if h.randomPrivKey == nil {
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return err
}
}
// Check the signature.
token, err := h.staticSharedSecret(prv)
if err != nil {
return err
}
signedMsg := xor(token, h.initNonce)
remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:])
if err != nil {
return err
}
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
return nil
}
// secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values.
func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) {
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
if err != nil {
return Secrets{}, err
}
// derive base secrets from ephemeral key agreement
sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
s := Secrets{
remote: h.remote.ExportECDSA(),
AES: aesSecret,
MAC: crypto.Keccak256(ecdheSecret, aesSecret),
}
// setup sha3 instances for the MACs
mac1 := sha3.NewLegacyKeccak256()
mac1.Write(xor(s.MAC, h.respNonce))
mac1.Write(auth)
mac2 := sha3.NewLegacyKeccak256()
mac2.Write(xor(s.MAC, h.initNonce))
mac2.Write(authResp)
if h.initiator {
s.EgressMAC, s.IngressMAC = mac1, mac2
} else {
s.EgressMAC, s.IngressMAC = mac2, mac1
}
return s, nil
}
// staticSharedSecret returns the static shared secret, the result
// of key agreement between the local and remote static node key.
func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
}
// runInitiator negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// prv is the local client's private key.
func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
h.initiator = true
h.remote = ecies.ImportECDSAPublic(remote)
authMsg, err := h.makeAuthMsg(prv)
if err != nil {
return s, err
}
authPacket, err := h.sealEIP8(authMsg)
if err != nil {
return s, err
}
if _, err = conn.Write(authPacket); err != nil {
return s, err
}
authRespMsg := new(authRespV4)
authRespPacket, err := h.readMsg(authRespMsg, prv, conn)
if err != nil {
return s, err
}
if err := h.handleAuthResp(authRespMsg); err != nil {
return s, err
}
return h.secrets(authPacket, authRespPacket)
}
// makeAuthMsg creates the initiator handshake message.
func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
// Generate random initiator nonce.
h.initNonce = make([]byte, shaLen)
_, err := rand.Read(h.initNonce)
if err != nil {
return nil, err
}
// Generate random keypair to for ECDH.
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
// Sign known message: static-shared-secret ^ nonce
token, err := h.staticSharedSecret(prv)
if err != nil {
return nil, err
}
signed := xor(token, h.initNonce)
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
if err != nil {
return nil, err
}
msg := new(authMsgV4)
copy(msg.Signature[:], signature)
copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
copy(msg.Nonce[:], h.initNonce)
msg.Version = 4
return msg, nil
}
func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) {
h.respNonce = msg.Nonce[:]
h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
return err
}
func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) {
// Generate random nonce.
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
return nil, err
}
msg = new(authRespV4)
copy(msg.Nonce[:], h.respNonce)
copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
msg.Version = 4
return msg, nil
}
// readMsg reads an encrypted handshake message, decoding it into msg.
func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
h.rbuf.reset()
h.rbuf.grow(512)
// Read the size prefix.
prefix, err := h.rbuf.read(r, 2)
if err != nil {
return nil, err
}
size := binary.BigEndian.Uint16(prefix)
// Read the handshake packet.
packet, err := h.rbuf.read(r, int(size))
if err != nil {
return nil, err
}
dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix)
if err != nil {
return nil, err
}
// Can't use rlp.DecodeBytes here because it rejects
// trailing data (forward-compatibility).
s := rlp.NewStream(bytes.NewReader(dec), 0)
err = s.Decode(msg)
return h.rbuf.data[:len(prefix)+len(packet)], err
}
// sealEIP8 encrypts a handshake message.
func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) {
h.wbuf.reset()
// Write the message plaintext.
if err := rlp.Encode(&h.wbuf, msg); err != nil {
return nil, err
}
// Pad with random amount of data. the amount needs to be at least 100 bytes to make
// the message distinguishable from pre-EIP-8 handshakes.
h.wbuf.appendZero(mrand.Intn(100) + 100)
prefix := make([]byte, 2)
binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead))
enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix)
return append(prefix, enc...), err
}
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
// add 'uncompressed key' flag
pubKey65 = append([]byte{0x04}, pubKey...)
case 65:
pubKey65 = pubKey
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
// TODO: fewer pointless conversions
pub, err := crypto.UnmarshalPubkey(pubKey65)
if err != nil {
return nil, err
}
return ecies.ImportECDSAPublic(pub), nil
}
func exportPubkey(pub *ecies.PublicKey) []byte {
if pub == nil {
panic("nil pubkey")
}
return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
}
func xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return xor
}