mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2024-12-22 11:31:02 +00:00
c22fdec3c7
These methods can be helpful when migrating existing timer code.
210 lines
5.0 KiB
Go
210 lines
5.0 KiB
Go
// Copyright 2018 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package mclock
|
|
|
|
import (
|
|
"container/heap"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
// Simulated implements a virtual Clock for reproducible time-sensitive tests. It
|
|
// simulates a scheduler on a virtual timescale where actual processing takes zero time.
|
|
//
|
|
// The virtual clock doesn't advance on its own, call Run to advance it and execute timers.
|
|
// Since there is no way to influence the Go scheduler, testing timeout behaviour involving
|
|
// goroutines needs special care. A good way to test such timeouts is as follows: First
|
|
// perform the action that is supposed to time out. Ensure that the timer you want to test
|
|
// is created. Then run the clock until after the timeout. Finally observe the effect of
|
|
// the timeout using a channel or semaphore.
|
|
type Simulated struct {
|
|
now AbsTime
|
|
scheduled simTimerHeap
|
|
mu sync.RWMutex
|
|
cond *sync.Cond
|
|
}
|
|
|
|
// simTimer implements ChanTimer on the virtual clock.
|
|
type simTimer struct {
|
|
at AbsTime
|
|
index int // position in s.scheduled
|
|
s *Simulated
|
|
do func()
|
|
ch <-chan AbsTime
|
|
}
|
|
|
|
func (s *Simulated) init() {
|
|
if s.cond == nil {
|
|
s.cond = sync.NewCond(&s.mu)
|
|
}
|
|
}
|
|
|
|
// Run moves the clock by the given duration, executing all timers before that duration.
|
|
func (s *Simulated) Run(d time.Duration) {
|
|
s.mu.Lock()
|
|
s.init()
|
|
|
|
end := s.now + AbsTime(d)
|
|
var do []func()
|
|
for len(s.scheduled) > 0 && s.scheduled[0].at <= end {
|
|
ev := heap.Pop(&s.scheduled).(*simTimer)
|
|
do = append(do, ev.do)
|
|
}
|
|
s.now = end
|
|
s.mu.Unlock()
|
|
|
|
for _, fn := range do {
|
|
fn()
|
|
}
|
|
}
|
|
|
|
// ActiveTimers returns the number of timers that haven't fired.
|
|
func (s *Simulated) ActiveTimers() int {
|
|
s.mu.RLock()
|
|
defer s.mu.RUnlock()
|
|
|
|
return len(s.scheduled)
|
|
}
|
|
|
|
// WaitForTimers waits until the clock has at least n scheduled timers.
|
|
func (s *Simulated) WaitForTimers(n int) {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
s.init()
|
|
|
|
for len(s.scheduled) < n {
|
|
s.cond.Wait()
|
|
}
|
|
}
|
|
|
|
// Now returns the current virtual time.
|
|
func (s *Simulated) Now() AbsTime {
|
|
s.mu.RLock()
|
|
defer s.mu.RUnlock()
|
|
|
|
return s.now
|
|
}
|
|
|
|
// Sleep blocks until the clock has advanced by d.
|
|
func (s *Simulated) Sleep(d time.Duration) {
|
|
<-s.After(d)
|
|
}
|
|
|
|
// NewTimer creates a timer which fires when the clock has advanced by d.
|
|
func (s *Simulated) NewTimer(d time.Duration) ChanTimer {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
|
|
ch := make(chan AbsTime, 1)
|
|
var timer *simTimer
|
|
timer = s.schedule(d, func() { ch <- timer.at })
|
|
timer.ch = ch
|
|
return timer
|
|
}
|
|
|
|
// After returns a channel which receives the current time after the clock
|
|
// has advanced by d.
|
|
func (s *Simulated) After(d time.Duration) <-chan AbsTime {
|
|
return s.NewTimer(d).C()
|
|
}
|
|
|
|
// AfterFunc runs fn after the clock has advanced by d. Unlike with the system
|
|
// clock, fn runs on the goroutine that calls Run.
|
|
func (s *Simulated) AfterFunc(d time.Duration, fn func()) Timer {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
|
|
return s.schedule(d, fn)
|
|
}
|
|
|
|
func (s *Simulated) schedule(d time.Duration, fn func()) *simTimer {
|
|
s.init()
|
|
|
|
at := s.now + AbsTime(d)
|
|
ev := &simTimer{do: fn, at: at, s: s}
|
|
heap.Push(&s.scheduled, ev)
|
|
s.cond.Broadcast()
|
|
return ev
|
|
}
|
|
|
|
func (ev *simTimer) Stop() bool {
|
|
ev.s.mu.Lock()
|
|
defer ev.s.mu.Unlock()
|
|
|
|
if ev.index < 0 {
|
|
return false
|
|
}
|
|
heap.Remove(&ev.s.scheduled, ev.index)
|
|
ev.s.cond.Broadcast()
|
|
ev.index = -1
|
|
return true
|
|
}
|
|
|
|
func (ev *simTimer) Reset(d time.Duration) {
|
|
if ev.ch == nil {
|
|
panic("mclock: Reset() on timer created by AfterFunc")
|
|
}
|
|
|
|
ev.s.mu.Lock()
|
|
defer ev.s.mu.Unlock()
|
|
ev.at = ev.s.now.Add(d)
|
|
if ev.index < 0 {
|
|
heap.Push(&ev.s.scheduled, ev) // already expired
|
|
} else {
|
|
heap.Fix(&ev.s.scheduled, ev.index) // hasn't fired yet, reschedule
|
|
}
|
|
ev.s.cond.Broadcast()
|
|
}
|
|
|
|
func (ev *simTimer) C() <-chan AbsTime {
|
|
if ev.ch == nil {
|
|
panic("mclock: C() on timer created by AfterFunc")
|
|
}
|
|
return ev.ch
|
|
}
|
|
|
|
type simTimerHeap []*simTimer
|
|
|
|
func (h *simTimerHeap) Len() int {
|
|
return len(*h)
|
|
}
|
|
|
|
func (h *simTimerHeap) Less(i, j int) bool {
|
|
return (*h)[i].at < (*h)[j].at
|
|
}
|
|
|
|
func (h *simTimerHeap) Swap(i, j int) {
|
|
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
|
|
(*h)[i].index = i
|
|
(*h)[j].index = j
|
|
}
|
|
|
|
func (h *simTimerHeap) Push(x interface{}) {
|
|
t := x.(*simTimer)
|
|
t.index = len(*h)
|
|
*h = append(*h, t)
|
|
}
|
|
|
|
func (h *simTimerHeap) Pop() interface{} {
|
|
end := len(*h) - 1
|
|
t := (*h)[end]
|
|
t.index = -1
|
|
(*h)[end] = nil
|
|
*h = (*h)[:end]
|
|
return t
|
|
}
|