go-pulse/internal/ethapi/api.go
2018-03-08 12:29:42 +02:00

1479 lines
52 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethapi
import (
"bytes"
"context"
"errors"
"fmt"
"math/big"
"strings"
"time"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/accounts/keystore"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/rpc"
"github.com/syndtr/goleveldb/leveldb"
"github.com/syndtr/goleveldb/leveldb/util"
)
const (
defaultGasPrice = 50 * params.Shannon
)
// PublicEthereumAPI provides an API to access Ethereum related information.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicEthereumAPI struct {
b Backend
}
// NewPublicEthereumAPI creates a new Ethereum protocol API.
func NewPublicEthereumAPI(b Backend) *PublicEthereumAPI {
return &PublicEthereumAPI{b}
}
// GasPrice returns a suggestion for a gas price.
func (s *PublicEthereumAPI) GasPrice(ctx context.Context) (*big.Int, error) {
return s.b.SuggestPrice(ctx)
}
// ProtocolVersion returns the current Ethereum protocol version this node supports
func (s *PublicEthereumAPI) ProtocolVersion() hexutil.Uint {
return hexutil.Uint(s.b.ProtocolVersion())
}
// Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not
// yet received the latest block headers from its pears. In case it is synchronizing:
// - startingBlock: block number this node started to synchronise from
// - currentBlock: block number this node is currently importing
// - highestBlock: block number of the highest block header this node has received from peers
// - pulledStates: number of state entries processed until now
// - knownStates: number of known state entries that still need to be pulled
func (s *PublicEthereumAPI) Syncing() (interface{}, error) {
progress := s.b.Downloader().Progress()
// Return not syncing if the synchronisation already completed
if progress.CurrentBlock >= progress.HighestBlock {
return false, nil
}
// Otherwise gather the block sync stats
return map[string]interface{}{
"startingBlock": hexutil.Uint64(progress.StartingBlock),
"currentBlock": hexutil.Uint64(progress.CurrentBlock),
"highestBlock": hexutil.Uint64(progress.HighestBlock),
"pulledStates": hexutil.Uint64(progress.PulledStates),
"knownStates": hexutil.Uint64(progress.KnownStates),
}, nil
}
// PublicTxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential.
type PublicTxPoolAPI struct {
b Backend
}
// NewPublicTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewPublicTxPoolAPI(b Backend) *PublicTxPoolAPI {
return &PublicTxPoolAPI{b}
}
// Content returns the transactions contained within the transaction pool.
func (s *PublicTxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
content := map[string]map[string]map[string]*RPCTransaction{
"pending": make(map[string]map[string]*RPCTransaction),
"queued": make(map[string]map[string]*RPCTransaction),
}
pending, queue := s.b.TxPoolContent()
// Flatten the pending transactions
for account, txs := range pending {
dump := make(map[string]*RPCTransaction)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
}
content["pending"][account.Hex()] = dump
}
// Flatten the queued transactions
for account, txs := range queue {
dump := make(map[string]*RPCTransaction)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
}
content["queued"][account.Hex()] = dump
}
return content
}
// Status returns the number of pending and queued transaction in the pool.
func (s *PublicTxPoolAPI) Status() map[string]hexutil.Uint {
pending, queue := s.b.Stats()
return map[string]hexutil.Uint{
"pending": hexutil.Uint(pending),
"queued": hexutil.Uint(queue),
}
}
// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
func (s *PublicTxPoolAPI) Inspect() map[string]map[string]map[string]string {
content := map[string]map[string]map[string]string{
"pending": make(map[string]map[string]string),
"queued": make(map[string]map[string]string),
}
pending, queue := s.b.TxPoolContent()
// Define a formatter to flatten a transaction into a string
var format = func(tx *types.Transaction) string {
if to := tx.To(); to != nil {
return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
}
return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
}
// Flatten the pending transactions
for account, txs := range pending {
dump := make(map[string]string)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
}
content["pending"][account.Hex()] = dump
}
// Flatten the queued transactions
for account, txs := range queue {
dump := make(map[string]string)
for _, tx := range txs {
dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
}
content["queued"][account.Hex()] = dump
}
return content
}
// PublicAccountAPI provides an API to access accounts managed by this node.
// It offers only methods that can retrieve accounts.
type PublicAccountAPI struct {
am *accounts.Manager
}
// NewPublicAccountAPI creates a new PublicAccountAPI.
func NewPublicAccountAPI(am *accounts.Manager) *PublicAccountAPI {
return &PublicAccountAPI{am: am}
}
// Accounts returns the collection of accounts this node manages
func (s *PublicAccountAPI) Accounts() []common.Address {
addresses := make([]common.Address, 0) // return [] instead of nil if empty
for _, wallet := range s.am.Wallets() {
for _, account := range wallet.Accounts() {
addresses = append(addresses, account.Address)
}
}
return addresses
}
// PrivateAccountAPI provides an API to access accounts managed by this node.
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
type PrivateAccountAPI struct {
am *accounts.Manager
nonceLock *AddrLocker
b Backend
}
// NewPrivateAccountAPI create a new PrivateAccountAPI.
func NewPrivateAccountAPI(b Backend, nonceLock *AddrLocker) *PrivateAccountAPI {
return &PrivateAccountAPI{
am: b.AccountManager(),
nonceLock: nonceLock,
b: b,
}
}
// ListAccounts will return a list of addresses for accounts this node manages.
func (s *PrivateAccountAPI) ListAccounts() []common.Address {
addresses := make([]common.Address, 0) // return [] instead of nil if empty
for _, wallet := range s.am.Wallets() {
for _, account := range wallet.Accounts() {
addresses = append(addresses, account.Address)
}
}
return addresses
}
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
URL string `json:"url"`
Status string `json:"status"`
Failure string `json:"failure,omitempty"`
Accounts []accounts.Account `json:"accounts,omitempty"`
}
// ListWallets will return a list of wallets this node manages.
func (s *PrivateAccountAPI) ListWallets() []rawWallet {
wallets := make([]rawWallet, 0) // return [] instead of nil if empty
for _, wallet := range s.am.Wallets() {
status, failure := wallet.Status()
raw := rawWallet{
URL: wallet.URL().String(),
Status: status,
Accounts: wallet.Accounts(),
}
if failure != nil {
raw.Failure = failure.Error()
}
wallets = append(wallets, raw)
}
return wallets
}
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
func (s *PrivateAccountAPI) OpenWallet(url string, passphrase *string) error {
wallet, err := s.am.Wallet(url)
if err != nil {
return err
}
pass := ""
if passphrase != nil {
pass = *passphrase
}
return wallet.Open(pass)
}
// DeriveAccount requests a HD wallet to derive a new account, optionally pinning
// it for later reuse.
func (s *PrivateAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
wallet, err := s.am.Wallet(url)
if err != nil {
return accounts.Account{}, err
}
derivPath, err := accounts.ParseDerivationPath(path)
if err != nil {
return accounts.Account{}, err
}
if pin == nil {
pin = new(bool)
}
return wallet.Derive(derivPath, *pin)
}
// NewAccount will create a new account and returns the address for the new account.
func (s *PrivateAccountAPI) NewAccount(password string) (common.Address, error) {
acc, err := fetchKeystore(s.am).NewAccount(password)
if err == nil {
return acc.Address, nil
}
return common.Address{}, err
}
// fetchKeystore retrives the encrypted keystore from the account manager.
func fetchKeystore(am *accounts.Manager) *keystore.KeyStore {
return am.Backends(keystore.KeyStoreType)[0].(*keystore.KeyStore)
}
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
func (s *PrivateAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
key, err := crypto.HexToECDSA(privkey)
if err != nil {
return common.Address{}, err
}
acc, err := fetchKeystore(s.am).ImportECDSA(key, password)
return acc.Address, err
}
// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
func (s *PrivateAccountAPI) UnlockAccount(addr common.Address, password string, duration *uint64) (bool, error) {
const max = uint64(time.Duration(math.MaxInt64) / time.Second)
var d time.Duration
if duration == nil {
d = 300 * time.Second
} else if *duration > max {
return false, errors.New("unlock duration too large")
} else {
d = time.Duration(*duration) * time.Second
}
err := fetchKeystore(s.am).TimedUnlock(accounts.Account{Address: addr}, password, d)
return err == nil, err
}
// LockAccount will lock the account associated with the given address when it's unlocked.
func (s *PrivateAccountAPI) LockAccount(addr common.Address) bool {
return fetchKeystore(s.am).Lock(addr) == nil
}
// signTransactions sets defaults and signs the given transaction
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args SendTxArgs, passwd string) (*types.Transaction, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.From}
wallet, err := s.am.Find(account)
if err != nil {
return nil, err
}
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, s.b); err != nil {
return nil, err
}
// Assemble the transaction and sign with the wallet
tx := args.toTransaction()
var chainID *big.Int
if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
chainID = config.ChainId
}
return wallet.SignTxWithPassphrase(account, passwd, tx, chainID)
}
// SendTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.To. If the given passwd isn't
// able to decrypt the key it fails.
func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
if args.Nonce == nil {
// Hold the addresse's mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
s.nonceLock.LockAddr(args.From)
defer s.nonceLock.UnlockAddr(args.From)
}
signed, err := s.signTransaction(ctx, args, passwd)
if err != nil {
return common.Hash{}, err
}
return submitTransaction(ctx, s.b, signed)
}
// SignTransaction will create a transaction from the given arguments and
// tries to sign it with the key associated with args.To. If the given passwd isn't
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
func (s *PrivateAccountAPI) SignTransaction(ctx context.Context, args SendTxArgs, passwd string) (*SignTransactionResult, error) {
// No need to obtain the noncelock mutex, since we won't be sending this
// tx into the transaction pool, but right back to the user
if args.Gas == nil {
return nil, fmt.Errorf("gas not specified")
}
if args.GasPrice == nil {
return nil, fmt.Errorf("gasPrice not specified")
}
if args.Nonce == nil {
return nil, fmt.Errorf("nonce not specified")
}
signed, err := s.signTransaction(ctx, args, passwd)
if err != nil {
return nil, err
}
data, err := rlp.EncodeToBytes(signed)
if err != nil {
return nil, err
}
return &SignTransactionResult{data, signed}, nil
}
// signHash is a helper function that calculates a hash for the given message that can be
// safely used to calculate a signature from.
//
// The hash is calulcated as
// keccak256("\x19Ethereum Signed Message:\n"${message length}${message}).
//
// This gives context to the signed message and prevents signing of transactions.
func signHash(data []byte) []byte {
msg := fmt.Sprintf("\x19Ethereum Signed Message:\n%d%s", len(data), data)
return crypto.Keccak256([]byte(msg))
}
// Sign calculates an Ethereum ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message))
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
func (s *PrivateAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := s.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Assemble sign the data with the wallet
signature, err := wallet.SignHashWithPassphrase(account, passwd, signHash(data))
if err != nil {
return nil, err
}
signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
return signature, nil
}
// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
// the V value must be be 27 or 28 for legacy reasons.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
func (s *PrivateAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
if len(sig) != 65 {
return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
}
if sig[64] != 27 && sig[64] != 28 {
return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
}
sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
rpk, err := crypto.Ecrecover(signHash(data), sig)
if err != nil {
return common.Address{}, err
}
pubKey := crypto.ToECDSAPub(rpk)
recoveredAddr := crypto.PubkeyToAddress(*pubKey)
return recoveredAddr, nil
}
// SignAndSendTransaction was renamed to SendTransaction. This method is deprecated
// and will be removed in the future. It primary goal is to give clients time to update.
func (s *PrivateAccountAPI) SignAndSendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
return s.SendTransaction(ctx, args, passwd)
}
// PublicBlockChainAPI provides an API to access the Ethereum blockchain.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicBlockChainAPI struct {
b Backend
}
// NewPublicBlockChainAPI creates a new Ethereum blockchain API.
func NewPublicBlockChainAPI(b Backend) *PublicBlockChainAPI {
return &PublicBlockChainAPI{b}
}
// BlockNumber returns the block number of the chain head.
func (s *PublicBlockChainAPI) BlockNumber() *big.Int {
header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
return header.Number
}
// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
func (s *PublicBlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNr rpc.BlockNumber) (*big.Int, error) {
state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return nil, err
}
b := state.GetBalance(address)
return b, state.Error()
}
// GetBlockByNumber returns the requested block. When blockNr is -1 the chain head is returned. When fullTx is true all
// transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetBlockByNumber(ctx context.Context, blockNr rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
block, err := s.b.BlockByNumber(ctx, blockNr)
if block != nil {
response, err := s.rpcOutputBlock(block, true, fullTx)
if err == nil && blockNr == rpc.PendingBlockNumber {
// Pending blocks need to nil out a few fields
for _, field := range []string{"hash", "nonce", "miner"} {
response[field] = nil
}
}
return response, err
}
return nil, err
}
// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetBlockByHash(ctx context.Context, blockHash common.Hash, fullTx bool) (map[string]interface{}, error) {
block, err := s.b.GetBlock(ctx, blockHash)
if block != nil {
return s.rpcOutputBlock(block, true, fullTx)
}
return nil, err
}
// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
block, err := s.b.BlockByNumber(ctx, blockNr)
if block != nil {
uncles := block.Uncles()
if index >= hexutil.Uint(len(uncles)) {
log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
return nil, nil
}
block = types.NewBlockWithHeader(uncles[index])
return s.rpcOutputBlock(block, false, false)
}
return nil, err
}
// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
block, err := s.b.GetBlock(ctx, blockHash)
if block != nil {
uncles := block.Uncles()
if index >= hexutil.Uint(len(uncles)) {
log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
return nil, nil
}
block = types.NewBlockWithHeader(uncles[index])
return s.rpcOutputBlock(block, false, false)
}
return nil, err
}
// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
func (s *PublicBlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
n := hexutil.Uint(len(block.Uncles()))
return &n
}
return nil
}
// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
func (s *PublicBlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
if block, _ := s.b.GetBlock(ctx, blockHash); block != nil {
n := hexutil.Uint(len(block.Uncles()))
return &n
}
return nil
}
// GetCode returns the code stored at the given address in the state for the given block number.
func (s *PublicBlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return nil, err
}
code := state.GetCode(address)
return code, state.Error()
}
// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
func (s *PublicBlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return nil, err
}
res := state.GetState(address, common.HexToHash(key))
return res[:], state.Error()
}
// CallArgs represents the arguments for a call.
type CallArgs struct {
From common.Address `json:"from"`
To *common.Address `json:"to"`
Gas hexutil.Uint64 `json:"gas"`
GasPrice hexutil.Big `json:"gasPrice"`
Value hexutil.Big `json:"value"`
Data hexutil.Bytes `json:"data"`
}
func (s *PublicBlockChainAPI) doCall(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber, vmCfg vm.Config, timeout time.Duration) ([]byte, uint64, bool, error) {
defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())
state, header, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return nil, 0, false, err
}
// Set sender address or use a default if none specified
addr := args.From
if addr == (common.Address{}) {
if wallets := s.b.AccountManager().Wallets(); len(wallets) > 0 {
if accounts := wallets[0].Accounts(); len(accounts) > 0 {
addr = accounts[0].Address
}
}
}
// Set default gas & gas price if none were set
gas, gasPrice := uint64(args.Gas), args.GasPrice.ToInt()
if gas == 0 {
gas = math.MaxUint64 / 2
}
if gasPrice.Sign() == 0 {
gasPrice = new(big.Int).SetUint64(defaultGasPrice)
}
// Create new call message
msg := types.NewMessage(addr, args.To, 0, args.Value.ToInt(), gas, gasPrice, args.Data, false)
// Setup context so it may be cancelled the call has completed
// or, in case of unmetered gas, setup a context with a timeout.
var cancel context.CancelFunc
if timeout > 0 {
ctx, cancel = context.WithTimeout(ctx, timeout)
} else {
ctx, cancel = context.WithCancel(ctx)
}
// Make sure the context is cancelled when the call has completed
// this makes sure resources are cleaned up.
defer cancel()
// Get a new instance of the EVM.
evm, vmError, err := s.b.GetEVM(ctx, msg, state, header, vmCfg)
if err != nil {
return nil, 0, false, err
}
// Wait for the context to be done and cancel the evm. Even if the
// EVM has finished, cancelling may be done (repeatedly)
go func() {
<-ctx.Done()
evm.Cancel()
}()
// Setup the gas pool (also for unmetered requests)
// and apply the message.
gp := new(core.GasPool).AddGas(math.MaxUint64)
res, gas, failed, err := core.ApplyMessage(evm, msg, gp)
if err := vmError(); err != nil {
return nil, 0, false, err
}
return res, gas, failed, err
}
// Call executes the given transaction on the state for the given block number.
// It doesn't make and changes in the state/blockchain and is useful to execute and retrieve values.
func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
result, _, _, err := s.doCall(ctx, args, blockNr, vm.Config{}, 5*time.Second)
return (hexutil.Bytes)(result), err
}
// EstimateGas returns an estimate of the amount of gas needed to execute the
// given transaction against the current pending block.
func (s *PublicBlockChainAPI) EstimateGas(ctx context.Context, args CallArgs) (hexutil.Uint64, error) {
// Binary search the gas requirement, as it may be higher than the amount used
var (
lo uint64 = params.TxGas - 1
hi uint64
cap uint64
)
if uint64(args.Gas) >= params.TxGas {
hi = uint64(args.Gas)
} else {
// Retrieve the current pending block to act as the gas ceiling
block, err := s.b.BlockByNumber(ctx, rpc.PendingBlockNumber)
if err != nil {
return 0, err
}
hi = block.GasLimit()
}
cap = hi
// Create a helper to check if a gas allowance results in an executable transaction
executable := func(gas uint64) bool {
args.Gas = hexutil.Uint64(gas)
_, _, failed, err := s.doCall(ctx, args, rpc.PendingBlockNumber, vm.Config{}, 0)
if err != nil || failed {
return false
}
return true
}
// Execute the binary search and hone in on an executable gas limit
for lo+1 < hi {
mid := (hi + lo) / 2
if !executable(mid) {
lo = mid
} else {
hi = mid
}
}
// Reject the transaction as invalid if it still fails at the highest allowance
if hi == cap {
if !executable(hi) {
return 0, fmt.Errorf("gas required exceeds allowance or always failing transaction")
}
}
return hexutil.Uint64(hi), nil
}
// ExecutionResult groups all structured logs emitted by the EVM
// while replaying a transaction in debug mode as well as transaction
// execution status, the amount of gas used and the return value
type ExecutionResult struct {
Gas uint64 `json:"gas"`
Failed bool `json:"failed"`
ReturnValue string `json:"returnValue"`
StructLogs []StructLogRes `json:"structLogs"`
}
// StructLogRes stores a structured log emitted by the EVM while replaying a
// transaction in debug mode
type StructLogRes struct {
Pc uint64 `json:"pc"`
Op string `json:"op"`
Gas uint64 `json:"gas"`
GasCost uint64 `json:"gasCost"`
Depth int `json:"depth"`
Error error `json:"error,omitempty"`
Stack *[]string `json:"stack,omitempty"`
Memory *[]string `json:"memory,omitempty"`
Storage *map[string]string `json:"storage,omitempty"`
}
// formatLogs formats EVM returned structured logs for json output
func FormatLogs(logs []vm.StructLog) []StructLogRes {
formatted := make([]StructLogRes, len(logs))
for index, trace := range logs {
formatted[index] = StructLogRes{
Pc: trace.Pc,
Op: trace.Op.String(),
Gas: trace.Gas,
GasCost: trace.GasCost,
Depth: trace.Depth,
Error: trace.Err,
}
if trace.Stack != nil {
stack := make([]string, len(trace.Stack))
for i, stackValue := range trace.Stack {
stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
}
formatted[index].Stack = &stack
}
if trace.Memory != nil {
memory := make([]string, 0, (len(trace.Memory)+31)/32)
for i := 0; i+32 <= len(trace.Memory); i += 32 {
memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
}
formatted[index].Memory = &memory
}
if trace.Storage != nil {
storage := make(map[string]string)
for i, storageValue := range trace.Storage {
storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
}
formatted[index].Storage = &storage
}
}
return formatted
}
// rpcOutputBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func (s *PublicBlockChainAPI) rpcOutputBlock(b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
head := b.Header() // copies the header once
fields := map[string]interface{}{
"number": (*hexutil.Big)(head.Number),
"hash": b.Hash(),
"parentHash": head.ParentHash,
"nonce": head.Nonce,
"mixHash": head.MixDigest,
"sha3Uncles": head.UncleHash,
"logsBloom": head.Bloom,
"stateRoot": head.Root,
"miner": head.Coinbase,
"difficulty": (*hexutil.Big)(head.Difficulty),
"totalDifficulty": (*hexutil.Big)(s.b.GetTd(b.Hash())),
"extraData": hexutil.Bytes(head.Extra),
"size": hexutil.Uint64(b.Size()),
"gasLimit": hexutil.Uint64(head.GasLimit),
"gasUsed": hexutil.Uint64(head.GasUsed),
"timestamp": (*hexutil.Big)(head.Time),
"transactionsRoot": head.TxHash,
"receiptsRoot": head.ReceiptHash,
}
if inclTx {
formatTx := func(tx *types.Transaction) (interface{}, error) {
return tx.Hash(), nil
}
if fullTx {
formatTx = func(tx *types.Transaction) (interface{}, error) {
return newRPCTransactionFromBlockHash(b, tx.Hash()), nil
}
}
txs := b.Transactions()
transactions := make([]interface{}, len(txs))
var err error
for i, tx := range b.Transactions() {
if transactions[i], err = formatTx(tx); err != nil {
return nil, err
}
}
fields["transactions"] = transactions
}
uncles := b.Uncles()
uncleHashes := make([]common.Hash, len(uncles))
for i, uncle := range uncles {
uncleHashes[i] = uncle.Hash()
}
fields["uncles"] = uncleHashes
return fields, nil
}
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
BlockHash common.Hash `json:"blockHash"`
BlockNumber *hexutil.Big `json:"blockNumber"`
From common.Address `json:"from"`
Gas hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
Hash common.Hash `json:"hash"`
Input hexutil.Bytes `json:"input"`
Nonce hexutil.Uint64 `json:"nonce"`
To *common.Address `json:"to"`
TransactionIndex hexutil.Uint `json:"transactionIndex"`
Value *hexutil.Big `json:"value"`
V *hexutil.Big `json:"v"`
R *hexutil.Big `json:"r"`
S *hexutil.Big `json:"s"`
}
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64) *RPCTransaction {
var signer types.Signer = types.FrontierSigner{}
if tx.Protected() {
signer = types.NewEIP155Signer(tx.ChainId())
}
from, _ := types.Sender(signer, tx)
v, r, s := tx.RawSignatureValues()
result := &RPCTransaction{
From: from,
Gas: hexutil.Uint64(tx.Gas()),
GasPrice: (*hexutil.Big)(tx.GasPrice()),
Hash: tx.Hash(),
Input: hexutil.Bytes(tx.Data()),
Nonce: hexutil.Uint64(tx.Nonce()),
To: tx.To(),
Value: (*hexutil.Big)(tx.Value()),
V: (*hexutil.Big)(v),
R: (*hexutil.Big)(r),
S: (*hexutil.Big)(s),
}
if blockHash != (common.Hash{}) {
result.BlockHash = blockHash
result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
result.TransactionIndex = hexutil.Uint(index)
}
return result
}
// newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func newRPCPendingTransaction(tx *types.Transaction) *RPCTransaction {
return newRPCTransaction(tx, common.Hash{}, 0, 0)
}
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64) *RPCTransaction {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index)
}
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
txs := b.Transactions()
if index >= uint64(len(txs)) {
return nil
}
blob, _ := rlp.EncodeToBytes(txs[index])
return blob
}
// newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash) *RPCTransaction {
for idx, tx := range b.Transactions() {
if tx.Hash() == hash {
return newRPCTransactionFromBlockIndex(b, uint64(idx))
}
}
return nil
}
// PublicTransactionPoolAPI exposes methods for the RPC interface
type PublicTransactionPoolAPI struct {
b Backend
nonceLock *AddrLocker
}
// NewPublicTransactionPoolAPI creates a new RPC service with methods specific for the transaction pool.
func NewPublicTransactionPoolAPI(b Backend, nonceLock *AddrLocker) *PublicTransactionPoolAPI {
return &PublicTransactionPoolAPI{b, nonceLock}
}
// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
if block, _ := s.b.GetBlock(ctx, blockHash); block != nil {
n := hexutil.Uint(len(block.Transactions()))
return &n
}
return nil
}
// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
if block, _ := s.b.GetBlock(ctx, blockHash); block != nil {
return newRPCTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
if block, _ := s.b.GetBlock(ctx, blockHash); block != nil {
return newRPCRawTransactionFromBlockIndex(block, uint64(index))
}
return nil
}
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
func (s *PublicTransactionPoolAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNr rpc.BlockNumber) (*hexutil.Uint64, error) {
state, _, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return nil, err
}
nonce := state.GetNonce(address)
return (*hexutil.Uint64)(&nonce), state.Error()
}
// GetTransactionByHash returns the transaction for the given hash
func (s *PublicTransactionPoolAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) *RPCTransaction {
// Try to return an already finalized transaction
if tx, blockHash, blockNumber, index := core.GetTransaction(s.b.ChainDb(), hash); tx != nil {
return newRPCTransaction(tx, blockHash, blockNumber, index)
}
// No finalized transaction, try to retrieve it from the pool
if tx := s.b.GetPoolTransaction(hash); tx != nil {
return newRPCPendingTransaction(tx)
}
// Transaction unknown, return as such
return nil
}
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
func (s *PublicTransactionPoolAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
var tx *types.Transaction
// Retrieve a finalized transaction, or a pooled otherwise
if tx, _, _, _ = core.GetTransaction(s.b.ChainDb(), hash); tx == nil {
if tx = s.b.GetPoolTransaction(hash); tx == nil {
// Transaction not found anywhere, abort
return nil, nil
}
}
// Serialize to RLP and return
return rlp.EncodeToBytes(tx)
}
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
func (s *PublicTransactionPoolAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
tx, blockHash, blockNumber, index := core.GetTransaction(s.b.ChainDb(), hash)
if tx == nil {
return nil, nil
}
receipts, err := s.b.GetReceipts(ctx, blockHash)
if err != nil {
return nil, err
}
if len(receipts) <= int(index) {
return nil, nil
}
receipt := receipts[index]
var signer types.Signer = types.FrontierSigner{}
if tx.Protected() {
signer = types.NewEIP155Signer(tx.ChainId())
}
from, _ := types.Sender(signer, tx)
fields := map[string]interface{}{
"blockHash": blockHash,
"blockNumber": hexutil.Uint64(blockNumber),
"transactionHash": hash,
"transactionIndex": hexutil.Uint64(index),
"from": from,
"to": tx.To(),
"gasUsed": hexutil.Uint64(receipt.GasUsed),
"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
"contractAddress": nil,
"logs": receipt.Logs,
"logsBloom": receipt.Bloom,
}
// Assign receipt status or post state.
if len(receipt.PostState) > 0 {
fields["root"] = hexutil.Bytes(receipt.PostState)
} else {
fields["status"] = hexutil.Uint(receipt.Status)
}
if receipt.Logs == nil {
fields["logs"] = [][]*types.Log{}
}
// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
if receipt.ContractAddress != (common.Address{}) {
fields["contractAddress"] = receipt.ContractAddress
}
return fields, nil
}
// sign is a helper function that signs a transaction with the private key of the given address.
func (s *PublicTransactionPoolAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := s.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Request the wallet to sign the transaction
var chainID *big.Int
if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
chainID = config.ChainId
}
return wallet.SignTx(account, tx, chainID)
}
// SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool.
type SendTxArgs struct {
From common.Address `json:"from"`
To *common.Address `json:"to"`
Gas *hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
Value *hexutil.Big `json:"value"`
Nonce *hexutil.Uint64 `json:"nonce"`
// We accept "data" and "input" for backwards-compatibility reasons. "input" is the
// newer name and should be preferred by clients.
Data *hexutil.Bytes `json:"data"`
Input *hexutil.Bytes `json:"input"`
}
// setDefaults is a helper function that fills in default values for unspecified tx fields.
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
if args.Gas == nil {
args.Gas = new(hexutil.Uint64)
*(*uint64)(args.Gas) = 90000
}
if args.GasPrice == nil {
price, err := b.SuggestPrice(ctx)
if err != nil {
return err
}
args.GasPrice = (*hexutil.Big)(price)
}
if args.Value == nil {
args.Value = new(hexutil.Big)
}
if args.Nonce == nil {
nonce, err := b.GetPoolNonce(ctx, args.From)
if err != nil {
return err
}
args.Nonce = (*hexutil.Uint64)(&nonce)
}
if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
return errors.New(`Both "data" and "input" are set and not equal. Please use "input" to pass transaction call data.`)
}
if args.To == nil {
// Contract creation
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if len(input) == 0 {
return errors.New(`contract creation without any data provided`)
}
}
return nil
}
func (args *SendTxArgs) toTransaction() *types.Transaction {
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if args.To == nil {
return types.NewContractCreation(uint64(*args.Nonce), (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
return types.NewTransaction(uint64(*args.Nonce), *args.To, (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
// submitTransaction is a helper function that submits tx to txPool and logs a message.
func submitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
if err := b.SendTx(ctx, tx); err != nil {
return common.Hash{}, err
}
if tx.To() == nil {
signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number())
from, err := types.Sender(signer, tx)
if err != nil {
return common.Hash{}, err
}
addr := crypto.CreateAddress(from, tx.Nonce())
log.Info("Submitted contract creation", "fullhash", tx.Hash().Hex(), "contract", addr.Hex())
} else {
log.Info("Submitted transaction", "fullhash", tx.Hash().Hex(), "recipient", tx.To())
}
return tx.Hash(), nil
}
// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
func (s *PublicTransactionPoolAPI) SendTransaction(ctx context.Context, args SendTxArgs) (common.Hash, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.From}
wallet, err := s.b.AccountManager().Find(account)
if err != nil {
return common.Hash{}, err
}
if args.Nonce == nil {
// Hold the addresse's mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
s.nonceLock.LockAddr(args.From)
defer s.nonceLock.UnlockAddr(args.From)
}
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, s.b); err != nil {
return common.Hash{}, err
}
// Assemble the transaction and sign with the wallet
tx := args.toTransaction()
var chainID *big.Int
if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
chainID = config.ChainId
}
signed, err := wallet.SignTx(account, tx, chainID)
if err != nil {
return common.Hash{}, err
}
return submitTransaction(ctx, s.b, signed)
}
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
func (s *PublicTransactionPoolAPI) SendRawTransaction(ctx context.Context, encodedTx hexutil.Bytes) (common.Hash, error) {
tx := new(types.Transaction)
if err := rlp.DecodeBytes(encodedTx, tx); err != nil {
return common.Hash{}, err
}
return submitTransaction(ctx, s.b, tx)
}
// Sign calculates an ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message).
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
func (s *PublicTransactionPoolAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
// Look up the wallet containing the requested signer
account := accounts.Account{Address: addr}
wallet, err := s.b.AccountManager().Find(account)
if err != nil {
return nil, err
}
// Sign the requested hash with the wallet
signature, err := wallet.SignHash(account, signHash(data))
if err == nil {
signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
}
return signature, err
}
// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
Raw hexutil.Bytes `json:"raw"`
Tx *types.Transaction `json:"tx"`
}
// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
func (s *PublicTransactionPoolAPI) SignTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
if args.Gas == nil {
return nil, fmt.Errorf("gas not specified")
}
if args.GasPrice == nil {
return nil, fmt.Errorf("gasPrice not specified")
}
if args.Nonce == nil {
return nil, fmt.Errorf("nonce not specified")
}
if err := args.setDefaults(ctx, s.b); err != nil {
return nil, err
}
tx, err := s.sign(args.From, args.toTransaction())
if err != nil {
return nil, err
}
data, err := rlp.EncodeToBytes(tx)
if err != nil {
return nil, err
}
return &SignTransactionResult{data, tx}, nil
}
// PendingTransactions returns the transactions that are in the transaction pool and have a from address that is one of
// the accounts this node manages.
func (s *PublicTransactionPoolAPI) PendingTransactions() ([]*RPCTransaction, error) {
pending, err := s.b.GetPoolTransactions()
if err != nil {
return nil, err
}
transactions := make([]*RPCTransaction, 0, len(pending))
for _, tx := range pending {
var signer types.Signer = types.HomesteadSigner{}
if tx.Protected() {
signer = types.NewEIP155Signer(tx.ChainId())
}
from, _ := types.Sender(signer, tx)
if _, err := s.b.AccountManager().Find(accounts.Account{Address: from}); err == nil {
transactions = append(transactions, newRPCPendingTransaction(tx))
}
}
return transactions, nil
}
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
func (s *PublicTransactionPoolAPI) Resend(ctx context.Context, sendArgs SendTxArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
if sendArgs.Nonce == nil {
return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec")
}
if err := sendArgs.setDefaults(ctx, s.b); err != nil {
return common.Hash{}, err
}
matchTx := sendArgs.toTransaction()
pending, err := s.b.GetPoolTransactions()
if err != nil {
return common.Hash{}, err
}
for _, p := range pending {
var signer types.Signer = types.HomesteadSigner{}
if p.Protected() {
signer = types.NewEIP155Signer(p.ChainId())
}
wantSigHash := signer.Hash(matchTx)
if pFrom, err := types.Sender(signer, p); err == nil && pFrom == sendArgs.From && signer.Hash(p) == wantSigHash {
// Match. Re-sign and send the transaction.
if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
sendArgs.GasPrice = gasPrice
}
if gasLimit != nil && *gasLimit != 0 {
sendArgs.Gas = gasLimit
}
signedTx, err := s.sign(sendArgs.From, sendArgs.toTransaction())
if err != nil {
return common.Hash{}, err
}
if err = s.b.SendTx(ctx, signedTx); err != nil {
return common.Hash{}, err
}
return signedTx.Hash(), nil
}
}
return common.Hash{}, fmt.Errorf("Transaction %#x not found", matchTx.Hash())
}
// PublicDebugAPI is the collection of Ethereum APIs exposed over the public
// debugging endpoint.
type PublicDebugAPI struct {
b Backend
}
// NewPublicDebugAPI creates a new API definition for the public debug methods
// of the Ethereum service.
func NewPublicDebugAPI(b Backend) *PublicDebugAPI {
return &PublicDebugAPI{b: b}
}
// GetBlockRlp retrieves the RLP encoded for of a single block.
func (api *PublicDebugAPI) GetBlockRlp(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
encoded, err := rlp.EncodeToBytes(block)
if err != nil {
return "", err
}
return fmt.Sprintf("%x", encoded), nil
}
// PrintBlock retrieves a block and returns its pretty printed form.
func (api *PublicDebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
return block.String(), nil
}
// SeedHash retrieves the seed hash of a block.
func (api *PublicDebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) {
block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
if block == nil {
return "", fmt.Errorf("block #%d not found", number)
}
return fmt.Sprintf("0x%x", ethash.SeedHash(number)), nil
}
// PrivateDebugAPI is the collection of Ethereum APIs exposed over the private
// debugging endpoint.
type PrivateDebugAPI struct {
b Backend
}
// NewPrivateDebugAPI creates a new API definition for the private debug methods
// of the Ethereum service.
func NewPrivateDebugAPI(b Backend) *PrivateDebugAPI {
return &PrivateDebugAPI{b: b}
}
// ChaindbProperty returns leveldb properties of the chain database.
func (api *PrivateDebugAPI) ChaindbProperty(property string) (string, error) {
ldb, ok := api.b.ChainDb().(interface {
LDB() *leveldb.DB
})
if !ok {
return "", fmt.Errorf("chaindbProperty does not work for memory databases")
}
if property == "" {
property = "leveldb.stats"
} else if !strings.HasPrefix(property, "leveldb.") {
property = "leveldb." + property
}
return ldb.LDB().GetProperty(property)
}
func (api *PrivateDebugAPI) ChaindbCompact() error {
ldb, ok := api.b.ChainDb().(interface {
LDB() *leveldb.DB
})
if !ok {
return fmt.Errorf("chaindbCompact does not work for memory databases")
}
for b := byte(0); b < 255; b++ {
log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
err := ldb.LDB().CompactRange(util.Range{Start: []byte{b}, Limit: []byte{b + 1}})
if err != nil {
log.Error("Database compaction failed", "err", err)
return err
}
}
return nil
}
// SetHead rewinds the head of the blockchain to a previous block.
func (api *PrivateDebugAPI) SetHead(number hexutil.Uint64) {
api.b.SetHead(uint64(number))
}
// PublicNetAPI offers network related RPC methods
type PublicNetAPI struct {
net *p2p.Server
networkVersion uint64
}
// NewPublicNetAPI creates a new net API instance.
func NewPublicNetAPI(net *p2p.Server, networkVersion uint64) *PublicNetAPI {
return &PublicNetAPI{net, networkVersion}
}
// Listening returns an indication if the node is listening for network connections.
func (s *PublicNetAPI) Listening() bool {
return true // always listening
}
// PeerCount returns the number of connected peers
func (s *PublicNetAPI) PeerCount() hexutil.Uint {
return hexutil.Uint(s.net.PeerCount())
}
// Version returns the current ethereum protocol version.
func (s *PublicNetAPI) Version() string {
return fmt.Sprintf("%d", s.networkVersion)
}