go-pulse/core/vm/interpreter.go
Paweł Bylica ae992a5d73 core/vm: Hide read only flag from Interpreter interface (#17461)
Makes Interface interface a bit more stateless and abstract.

Obviously this change is dictated by EVMC design. The EVMC tries to keep the responsibility for EVM features totally inside the VMs, if feasible. This makes VM "stateless" because VM does not need to pass any information between executions, all information is included in parameters of the execute function.
2018-09-07 18:13:25 +02:00

269 lines
8.8 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"fmt"
"sync/atomic"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/params"
)
// Config are the configuration options for the Interpreter
type Config struct {
// Debug enabled debugging Interpreter options
Debug bool
// Tracer is the op code logger
Tracer Tracer
// NoRecursion disabled Interpreter call, callcode,
// delegate call and create.
NoRecursion bool
// Enable recording of SHA3/keccak preimages
EnablePreimageRecording bool
// JumpTable contains the EVM instruction table. This
// may be left uninitialised and will be set to the default
// table.
JumpTable [256]operation
}
// Interpreter is used to run Ethereum based contracts and will utilise the
// passed environment to query external sources for state information.
// The Interpreter will run the byte code VM based on the passed
// configuration.
type Interpreter interface {
// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
Run(contract *Contract, input []byte, static bool) ([]byte, error)
// CanRun tells if the contract, passed as an argument, can be
// run by the current interpreter. This is meant so that the
// caller can do something like:
//
// ```golang
// for _, interpreter := range interpreters {
// if interpreter.CanRun(contract.code) {
// interpreter.Run(contract.code, input)
// }
// }
// ```
CanRun([]byte) bool
}
// EVMInterpreter represents an EVM interpreter
type EVMInterpreter struct {
evm *EVM
cfg Config
gasTable params.GasTable
intPool *intPool
readOnly bool // Whether to throw on stateful modifications
returnData []byte // Last CALL's return data for subsequent reuse
}
// NewEVMInterpreter returns a new instance of the Interpreter.
func NewEVMInterpreter(evm *EVM, cfg Config) *EVMInterpreter {
// We use the STOP instruction whether to see
// the jump table was initialised. If it was not
// we'll set the default jump table.
if !cfg.JumpTable[STOP].valid {
switch {
case evm.ChainConfig().IsConstantinople(evm.BlockNumber):
cfg.JumpTable = constantinopleInstructionSet
case evm.ChainConfig().IsByzantium(evm.BlockNumber):
cfg.JumpTable = byzantiumInstructionSet
case evm.ChainConfig().IsHomestead(evm.BlockNumber):
cfg.JumpTable = homesteadInstructionSet
default:
cfg.JumpTable = frontierInstructionSet
}
}
return &EVMInterpreter{
evm: evm,
cfg: cfg,
gasTable: evm.ChainConfig().GasTable(evm.BlockNumber),
}
}
func (in *EVMInterpreter) enforceRestrictions(op OpCode, operation operation, stack *Stack) error {
if in.evm.chainRules.IsByzantium {
if in.readOnly {
// If the interpreter is operating in readonly mode, make sure no
// state-modifying operation is performed. The 3rd stack item
// for a call operation is the value. Transferring value from one
// account to the others means the state is modified and should also
// return with an error.
if operation.writes || (op == CALL && stack.Back(2).BitLen() > 0) {
return errWriteProtection
}
}
}
return nil
}
// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
//
// It's important to note that any errors returned by the interpreter should be
// considered a revert-and-consume-all-gas operation except for
// errExecutionReverted which means revert-and-keep-gas-left.
func (in *EVMInterpreter) Run(contract *Contract, input []byte, readOnly bool) (ret []byte, err error) {
if in.intPool == nil {
in.intPool = poolOfIntPools.get()
defer func() {
poolOfIntPools.put(in.intPool)
in.intPool = nil
}()
}
// Increment the call depth which is restricted to 1024
in.evm.depth++
defer func() { in.evm.depth-- }()
// Make sure the readOnly is only set if we aren't in readOnly yet.
// This makes also sure that the readOnly flag isn't removed for child calls.
if readOnly && !in.readOnly {
in.readOnly = true
defer func() { in.readOnly = false }()
}
// Reset the previous call's return data. It's unimportant to preserve the old buffer
// as every returning call will return new data anyway.
in.returnData = nil
// Don't bother with the execution if there's no code.
if len(contract.Code) == 0 {
return nil, nil
}
var (
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
// For optimisation reason we're using uint64 as the program counter.
// It's theoretically possible to go above 2^64. The YP defines the PC
// to be uint256. Practically much less so feasible.
pc = uint64(0) // program counter
cost uint64
// copies used by tracer
pcCopy uint64 // needed for the deferred Tracer
gasCopy uint64 // for Tracer to log gas remaining before execution
logged bool // deferred Tracer should ignore already logged steps
)
contract.Input = input
// Reclaim the stack as an int pool when the execution stops
defer func() { in.intPool.put(stack.data...) }()
if in.cfg.Debug {
defer func() {
if err != nil {
if !logged {
in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
} else {
in.cfg.Tracer.CaptureFault(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
}
}
}()
}
// The Interpreter main run loop (contextual). This loop runs until either an
// explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
// the execution of one of the operations or until the done flag is set by the
// parent context.
for atomic.LoadInt32(&in.evm.abort) == 0 {
if in.cfg.Debug {
// Capture pre-execution values for tracing.
logged, pcCopy, gasCopy = false, pc, contract.Gas
}
// Get the operation from the jump table and validate the stack to ensure there are
// enough stack items available to perform the operation.
op = contract.GetOp(pc)
operation := in.cfg.JumpTable[op]
if !operation.valid {
return nil, fmt.Errorf("invalid opcode 0x%x", int(op))
}
if err := operation.validateStack(stack); err != nil {
return nil, err
}
// If the operation is valid, enforce and write restrictions
if err := in.enforceRestrictions(op, operation, stack); err != nil {
return nil, err
}
var memorySize uint64
// calculate the new memory size and expand the memory to fit
// the operation
if operation.memorySize != nil {
memSize, overflow := bigUint64(operation.memorySize(stack))
if overflow {
return nil, errGasUintOverflow
}
// memory is expanded in words of 32 bytes. Gas
// is also calculated in words.
if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
return nil, errGasUintOverflow
}
}
// consume the gas and return an error if not enough gas is available.
// cost is explicitly set so that the capture state defer method can get the proper cost
cost, err = operation.gasCost(in.gasTable, in.evm, contract, stack, mem, memorySize)
if err != nil || !contract.UseGas(cost) {
return nil, ErrOutOfGas
}
if memorySize > 0 {
mem.Resize(memorySize)
}
if in.cfg.Debug {
in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
logged = true
}
// execute the operation
res, err := operation.execute(&pc, in, contract, mem, stack)
// verifyPool is a build flag. Pool verification makes sure the integrity
// of the integer pool by comparing values to a default value.
if verifyPool {
verifyIntegerPool(in.intPool)
}
// if the operation clears the return data (e.g. it has returning data)
// set the last return to the result of the operation.
if operation.returns {
in.returnData = res
}
switch {
case err != nil:
return nil, err
case operation.reverts:
return res, errExecutionReverted
case operation.halts:
return res, nil
case !operation.jumps:
pc++
}
}
return nil, nil
}
// CanRun tells if the contract, passed as an argument, can be
// run by the current interpreter.
func (in *EVMInterpreter) CanRun(code []byte) bool {
return true
}