mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2025-01-17 23:58:46 +00:00
9b0af51386
* vendor: add github.com/btcsuite/btcd/btcec * crypto: add btcec fallback for sign/recover without cgo This commit adds a non-cgo fallback implementation of secp256k1 operations. * crypto, core/vm: remove wrappers for sha256, ripemd160
420 lines
11 KiB
Go
420 lines
11 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package discv5
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
"math/rand"
|
|
"net"
|
|
"net/url"
|
|
"regexp"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
)
|
|
|
|
// Node represents a host on the network.
|
|
// The public fields of Node may not be modified.
|
|
type Node struct {
|
|
IP net.IP // len 4 for IPv4 or 16 for IPv6
|
|
UDP, TCP uint16 // port numbers
|
|
ID NodeID // the node's public key
|
|
|
|
// Network-related fields are contained in nodeNetGuts.
|
|
// These fields are not supposed to be used off the
|
|
// Network.loop goroutine.
|
|
nodeNetGuts
|
|
}
|
|
|
|
// NewNode creates a new node. It is mostly meant to be used for
|
|
// testing purposes.
|
|
func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
|
|
if ipv4 := ip.To4(); ipv4 != nil {
|
|
ip = ipv4
|
|
}
|
|
return &Node{
|
|
IP: ip,
|
|
UDP: udpPort,
|
|
TCP: tcpPort,
|
|
ID: id,
|
|
nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
|
|
}
|
|
}
|
|
|
|
func (n *Node) addr() *net.UDPAddr {
|
|
return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
|
|
}
|
|
|
|
func (n *Node) setAddr(a *net.UDPAddr) {
|
|
n.IP = a.IP
|
|
if ipv4 := a.IP.To4(); ipv4 != nil {
|
|
n.IP = ipv4
|
|
}
|
|
n.UDP = uint16(a.Port)
|
|
}
|
|
|
|
// compares the given address against the stored values.
|
|
func (n *Node) addrEqual(a *net.UDPAddr) bool {
|
|
ip := a.IP
|
|
if ipv4 := a.IP.To4(); ipv4 != nil {
|
|
ip = ipv4
|
|
}
|
|
return n.UDP == uint16(a.Port) && n.IP.Equal(ip)
|
|
}
|
|
|
|
// Incomplete returns true for nodes with no IP address.
|
|
func (n *Node) Incomplete() bool {
|
|
return n.IP == nil
|
|
}
|
|
|
|
// checks whether n is a valid complete node.
|
|
func (n *Node) validateComplete() error {
|
|
if n.Incomplete() {
|
|
return errors.New("incomplete node")
|
|
}
|
|
if n.UDP == 0 {
|
|
return errors.New("missing UDP port")
|
|
}
|
|
if n.TCP == 0 {
|
|
return errors.New("missing TCP port")
|
|
}
|
|
if n.IP.IsMulticast() || n.IP.IsUnspecified() {
|
|
return errors.New("invalid IP (multicast/unspecified)")
|
|
}
|
|
_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
|
|
return err
|
|
}
|
|
|
|
// The string representation of a Node is a URL.
|
|
// Please see ParseNode for a description of the format.
|
|
func (n *Node) String() string {
|
|
u := url.URL{Scheme: "enode"}
|
|
if n.Incomplete() {
|
|
u.Host = fmt.Sprintf("%x", n.ID[:])
|
|
} else {
|
|
addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
|
|
u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
|
|
u.Host = addr.String()
|
|
if n.UDP != n.TCP {
|
|
u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
|
|
}
|
|
}
|
|
return u.String()
|
|
}
|
|
|
|
var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
|
|
|
|
// ParseNode parses a node designator.
|
|
//
|
|
// There are two basic forms of node designators
|
|
// - incomplete nodes, which only have the public key (node ID)
|
|
// - complete nodes, which contain the public key and IP/Port information
|
|
//
|
|
// For incomplete nodes, the designator must look like one of these
|
|
//
|
|
// enode://<hex node id>
|
|
// <hex node id>
|
|
//
|
|
// For complete nodes, the node ID is encoded in the username portion
|
|
// of the URL, separated from the host by an @ sign. The hostname can
|
|
// only be given as an IP address, DNS domain names are not allowed.
|
|
// The port in the host name section is the TCP listening port. If the
|
|
// TCP and UDP (discovery) ports differ, the UDP port is specified as
|
|
// query parameter "discport".
|
|
//
|
|
// In the following example, the node URL describes
|
|
// a node with IP address 10.3.58.6, TCP listening port 30303
|
|
// and UDP discovery port 30301.
|
|
//
|
|
// enode://<hex node id>@10.3.58.6:30303?discport=30301
|
|
func ParseNode(rawurl string) (*Node, error) {
|
|
if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
|
|
id, err := HexID(m[1])
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid node ID (%v)", err)
|
|
}
|
|
return NewNode(id, nil, 0, 0), nil
|
|
}
|
|
return parseComplete(rawurl)
|
|
}
|
|
|
|
func parseComplete(rawurl string) (*Node, error) {
|
|
var (
|
|
id NodeID
|
|
ip net.IP
|
|
tcpPort, udpPort uint64
|
|
)
|
|
u, err := url.Parse(rawurl)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if u.Scheme != "enode" {
|
|
return nil, errors.New("invalid URL scheme, want \"enode\"")
|
|
}
|
|
// Parse the Node ID from the user portion.
|
|
if u.User == nil {
|
|
return nil, errors.New("does not contain node ID")
|
|
}
|
|
if id, err = HexID(u.User.String()); err != nil {
|
|
return nil, fmt.Errorf("invalid node ID (%v)", err)
|
|
}
|
|
// Parse the IP address.
|
|
host, port, err := net.SplitHostPort(u.Host)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid host: %v", err)
|
|
}
|
|
if ip = net.ParseIP(host); ip == nil {
|
|
return nil, errors.New("invalid IP address")
|
|
}
|
|
// Ensure the IP is 4 bytes long for IPv4 addresses.
|
|
if ipv4 := ip.To4(); ipv4 != nil {
|
|
ip = ipv4
|
|
}
|
|
// Parse the port numbers.
|
|
if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
|
|
return nil, errors.New("invalid port")
|
|
}
|
|
udpPort = tcpPort
|
|
qv := u.Query()
|
|
if qv.Get("discport") != "" {
|
|
udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
|
|
if err != nil {
|
|
return nil, errors.New("invalid discport in query")
|
|
}
|
|
}
|
|
return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
|
|
}
|
|
|
|
// MustParseNode parses a node URL. It panics if the URL is not valid.
|
|
func MustParseNode(rawurl string) *Node {
|
|
n, err := ParseNode(rawurl)
|
|
if err != nil {
|
|
panic("invalid node URL: " + err.Error())
|
|
}
|
|
return n
|
|
}
|
|
|
|
// type nodeQueue []*Node
|
|
//
|
|
// // pushNew adds n to the end if it is not present.
|
|
// func (nl *nodeList) appendNew(n *Node) {
|
|
// for _, entry := range n {
|
|
// if entry == n {
|
|
// return
|
|
// }
|
|
// }
|
|
// *nq = append(*nq, n)
|
|
// }
|
|
//
|
|
// // popRandom removes a random node. Nodes closer to
|
|
// // to the head of the beginning of the have a slightly higher probability.
|
|
// func (nl *nodeList) popRandom() *Node {
|
|
// ix := rand.Intn(len(*nq))
|
|
// //TODO: probability as mentioned above.
|
|
// nl.removeIndex(ix)
|
|
// }
|
|
//
|
|
// func (nl *nodeList) removeIndex(i int) *Node {
|
|
// slice = *nl
|
|
// if len(*slice) <= i {
|
|
// return nil
|
|
// }
|
|
// *nl = append(slice[:i], slice[i+1:]...)
|
|
// }
|
|
|
|
const nodeIDBits = 512
|
|
|
|
// NodeID is a unique identifier for each node.
|
|
// The node identifier is a marshaled elliptic curve public key.
|
|
type NodeID [nodeIDBits / 8]byte
|
|
|
|
// NodeID prints as a long hexadecimal number.
|
|
func (n NodeID) String() string {
|
|
return fmt.Sprintf("%x", n[:])
|
|
}
|
|
|
|
// The Go syntax representation of a NodeID is a call to HexID.
|
|
func (n NodeID) GoString() string {
|
|
return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
|
|
}
|
|
|
|
// HexID converts a hex string to a NodeID.
|
|
// The string may be prefixed with 0x.
|
|
func HexID(in string) (NodeID, error) {
|
|
var id NodeID
|
|
b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
|
|
if err != nil {
|
|
return id, err
|
|
} else if len(b) != len(id) {
|
|
return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
|
|
}
|
|
copy(id[:], b)
|
|
return id, nil
|
|
}
|
|
|
|
// MustHexID converts a hex string to a NodeID.
|
|
// It panics if the string is not a valid NodeID.
|
|
func MustHexID(in string) NodeID {
|
|
id, err := HexID(in)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return id
|
|
}
|
|
|
|
// PubkeyID returns a marshaled representation of the given public key.
|
|
func PubkeyID(pub *ecdsa.PublicKey) NodeID {
|
|
var id NodeID
|
|
pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
|
|
if len(pbytes)-1 != len(id) {
|
|
panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
|
|
}
|
|
copy(id[:], pbytes[1:])
|
|
return id
|
|
}
|
|
|
|
// Pubkey returns the public key represented by the node ID.
|
|
// It returns an error if the ID is not a point on the curve.
|
|
func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
|
|
p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
|
|
half := len(id) / 2
|
|
p.X.SetBytes(id[:half])
|
|
p.Y.SetBytes(id[half:])
|
|
if !p.Curve.IsOnCurve(p.X, p.Y) {
|
|
return nil, errors.New("id is invalid secp256k1 curve point")
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
func (id NodeID) mustPubkey() ecdsa.PublicKey {
|
|
pk, err := id.Pubkey()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return *pk
|
|
}
|
|
|
|
// recoverNodeID computes the public key used to sign the
|
|
// given hash from the signature.
|
|
func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
|
|
pubkey, err := crypto.Ecrecover(hash, sig)
|
|
if err != nil {
|
|
return id, err
|
|
}
|
|
if len(pubkey)-1 != len(id) {
|
|
return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
|
|
}
|
|
for i := range id {
|
|
id[i] = pubkey[i+1]
|
|
}
|
|
return id, nil
|
|
}
|
|
|
|
// distcmp compares the distances a->target and b->target.
|
|
// Returns -1 if a is closer to target, 1 if b is closer to target
|
|
// and 0 if they are equal.
|
|
func distcmp(target, a, b common.Hash) int {
|
|
for i := range target {
|
|
da := a[i] ^ target[i]
|
|
db := b[i] ^ target[i]
|
|
if da > db {
|
|
return 1
|
|
} else if da < db {
|
|
return -1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// table of leading zero counts for bytes [0..255]
|
|
var lzcount = [256]int{
|
|
8, 7, 6, 6, 5, 5, 5, 5,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3, 3, 3, 3,
|
|
2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
}
|
|
|
|
// logdist returns the logarithmic distance between a and b, log2(a ^ b).
|
|
func logdist(a, b common.Hash) int {
|
|
lz := 0
|
|
for i := range a {
|
|
x := a[i] ^ b[i]
|
|
if x == 0 {
|
|
lz += 8
|
|
} else {
|
|
lz += lzcount[x]
|
|
break
|
|
}
|
|
}
|
|
return len(a)*8 - lz
|
|
}
|
|
|
|
// hashAtDistance returns a random hash such that logdist(a, b) == n
|
|
func hashAtDistance(a common.Hash, n int) (b common.Hash) {
|
|
if n == 0 {
|
|
return a
|
|
}
|
|
// flip bit at position n, fill the rest with random bits
|
|
b = a
|
|
pos := len(a) - n/8 - 1
|
|
bit := byte(0x01) << (byte(n%8) - 1)
|
|
if bit == 0 {
|
|
pos++
|
|
bit = 0x80
|
|
}
|
|
b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
|
|
for i := pos + 1; i < len(a); i++ {
|
|
b[i] = byte(rand.Intn(255))
|
|
}
|
|
return b
|
|
}
|