go-pulse/core/state/snapshot/snapshot_test.go
Martin HS a5a4fa7032
all: use uint256 in state (#28598)
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
2024-01-23 14:51:58 +01:00

492 lines
18 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
crand "crypto/rand"
"encoding/binary"
"fmt"
"math/rand"
"testing"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/rlp"
"github.com/holiman/uint256"
)
// randomHash generates a random blob of data and returns it as a hash.
func randomHash() common.Hash {
var hash common.Hash
if n, err := crand.Read(hash[:]); n != common.HashLength || err != nil {
panic(err)
}
return hash
}
// randomAccount generates a random account and returns it RLP encoded.
func randomAccount() []byte {
a := &types.StateAccount{
Balance: uint256.NewInt(rand.Uint64()),
Nonce: rand.Uint64(),
Root: randomHash(),
CodeHash: types.EmptyCodeHash[:],
}
data, _ := rlp.EncodeToBytes(a)
return data
}
// randomAccountSet generates a set of random accounts with the given strings as
// the account address hashes.
func randomAccountSet(hashes ...string) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for _, hash := range hashes {
accounts[common.HexToHash(hash)] = randomAccount()
}
return accounts
}
// randomStorageSet generates a set of random slots with the given strings as
// the slot addresses.
func randomStorageSet(accounts []string, hashes [][]string, nilStorage [][]string) map[common.Hash]map[common.Hash][]byte {
storages := make(map[common.Hash]map[common.Hash][]byte)
for index, account := range accounts {
storages[common.HexToHash(account)] = make(map[common.Hash][]byte)
if index < len(hashes) {
hashes := hashes[index]
for _, hash := range hashes {
storages[common.HexToHash(account)][common.HexToHash(hash)] = randomHash().Bytes()
}
}
if index < len(nilStorage) {
nils := nilStorage[index]
for _, hash := range nils {
storages[common.HexToHash(account)][common.HexToHash(hash)] = nil
}
}
}
return storages
}
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test flattens every diff layer
// to check internal corner case around the bottom-most memory accumulator.
func TestDiskLayerExternalInvalidationFullFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit a diff on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 2)
}
// Commit the diff layer onto the disk and ensure it's persisted
if err := snaps.Cap(common.HexToHash("0x02"), 0); err != nil {
t.Fatalf("failed to merge diff layer onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievals on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 1 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 1)
fmt.Println(snaps.layers)
}
}
// Tests that if a disk layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiskLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Retrieve a reference to the base and commit two diffs on top
ref := snaps.Snapshot(base.root)
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 3)
}
// Commit the diff layer onto the disk and ensure it's persisted
defer func(memcap uint64) { aggregatorMemoryLimit = memcap }(aggregatorMemoryLimit)
aggregatorMemoryLimit = 0
if err := snaps.Cap(common.HexToHash("0x03"), 1); err != nil {
t.Fatalf("failed to merge accumulator onto disk: %v", err)
}
// Since the base layer was modified, ensure that data retrievals on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 2 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 2)
fmt.Println(snaps.layers)
}
}
// Tests that if a diff layer becomes stale, no active external references will
// be returned with junk data. This version of the test retains the bottom diff
// layer to check the usual mode of operation where the accumulator is retained.
func TestDiffLayerExternalInvalidationPartialFlatten(t *testing.T) {
// Un-commenting this triggers the bloom set to be deterministic. The values below
// were used to trigger the flaw described in https://github.com/ethereum/go-ethereum/issues/27254.
// bloomDestructHasherOffset, bloomAccountHasherOffset, bloomStorageHasherOffset = 14, 24, 5
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Commit three diffs on top and retrieve a reference to the bottommost
accounts := map[common.Hash][]byte{
common.HexToHash("0xa1"): randomAccount(),
}
if err := snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if err := snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), nil, accounts, nil); err != nil {
t.Fatalf("failed to create a diff layer: %v", err)
}
if n := len(snaps.layers); n != 4 {
t.Errorf("pre-cap layer count mismatch: have %d, want %d", n, 4)
}
ref := snaps.Snapshot(common.HexToHash("0x02"))
// Doing a Cap operation with many allowed layers should be a no-op
exp := len(snaps.layers)
if err := snaps.Cap(common.HexToHash("0x04"), 2000); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
if got := len(snaps.layers); got != exp {
t.Errorf("layers modified, got %d exp %d", got, exp)
}
// Flatten the diff layer into the bottom accumulator
if err := snaps.Cap(common.HexToHash("0x04"), 1); err != nil {
t.Fatalf("failed to flatten diff layer into accumulator: %v", err)
}
// Since the accumulator diff layer was modified, ensure that data retrievals on the external reference fail
if acc, err := ref.Account(common.HexToHash("0x01")); err != ErrSnapshotStale {
t.Errorf("stale reference returned account: %#x (err: %v)", acc, err)
}
if slot, err := ref.Storage(common.HexToHash("0xa1"), common.HexToHash("0xb1")); err != ErrSnapshotStale {
t.Errorf("stale reference returned storage slot: %#x (err: %v)", slot, err)
}
if n := len(snaps.layers); n != 3 {
t.Errorf("post-cap layer count mismatch: have %d, want %d", n, 3)
fmt.Println(snaps.layers)
}
}
// TestPostCapBasicDataAccess tests some functionality regarding capping/flattening.
func TestPostCapBasicDataAccess(t *testing.T) {
// setAccount is a helper to construct a random account entry and assign it to
// an account slot in a snapshot
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// Create a starting base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// The lowest difflayer
snaps.Update(common.HexToHash("0xa1"), common.HexToHash("0x01"), nil, setAccount("0xa1"), nil)
snaps.Update(common.HexToHash("0xa2"), common.HexToHash("0xa1"), nil, setAccount("0xa2"), nil)
snaps.Update(common.HexToHash("0xb2"), common.HexToHash("0xa1"), nil, setAccount("0xb2"), nil)
snaps.Update(common.HexToHash("0xa3"), common.HexToHash("0xa2"), nil, setAccount("0xa3"), nil)
snaps.Update(common.HexToHash("0xb3"), common.HexToHash("0xb2"), nil, setAccount("0xb3"), nil)
// checkExist verifies if an account exists in a snapshot
checkExist := func(layer *diffLayer, key string) error {
if data, _ := layer.Account(common.HexToHash(key)); data == nil {
return fmt.Errorf("expected %x to exist, got nil", common.HexToHash(key))
}
return nil
}
// shouldErr checks that an account access errors as expected
shouldErr := func(layer *diffLayer, key string) error {
if data, err := layer.Account(common.HexToHash(key)); err == nil {
return fmt.Errorf("expected error, got data %x", data)
}
return nil
}
// check basics
snap := snaps.Snapshot(common.HexToHash("0xb3")).(*diffLayer)
if err := checkExist(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// Cap to a bad root should fail
if err := snaps.Cap(common.HexToHash("0x1337"), 0); err == nil {
t.Errorf("expected error, got none")
}
// Now, merge the a-chain
snaps.Cap(common.HexToHash("0xa3"), 0)
// At this point, a2 got merged into a1. Thus, a1 is now modified, and as a1 is
// the parent of b2, b2 should no longer be able to iterate into parent.
// These should still be accessible
if err := checkExist(snap, "0xb2"); err != nil {
t.Error(err)
}
if err := checkExist(snap, "0xb3"); err != nil {
t.Error(err)
}
// But these would need iteration into the modified parent
if err := shouldErr(snap, "0xa1"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa2"); err != nil {
t.Error(err)
}
if err := shouldErr(snap, "0xa3"); err != nil {
t.Error(err)
}
// Now, merge it again, just for fun. It should now error, since a3
// is a disk layer
if err := snaps.Cap(common.HexToHash("0xa3"), 0); err == nil {
t.Error("expected error capping the disk layer, got none")
}
}
// TestSnaphots tests the functionality for retrieving the snapshot
// with given head root and the desired depth.
func TestSnaphots(t *testing.T) {
// setAccount is a helper to construct a random account entry and assign it to
// an account slot in a snapshot
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
makeRoot := func(height uint64) common.Hash {
var buffer [8]byte
binary.BigEndian.PutUint64(buffer[:], height)
return common.BytesToHash(buffer[:])
}
// Create a starting base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: makeRoot(1),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Construct the snapshots with 129 layers, flattening whatever's above that
var (
last = common.HexToHash("0x01")
head common.Hash
)
for i := 0; i < 129; i++ {
head = makeRoot(uint64(i + 2))
snaps.Update(head, last, nil, setAccount(fmt.Sprintf("%d", i+2)), nil)
last = head
snaps.Cap(head, 128) // 130 layers (128 diffs + 1 accumulator + 1 disk)
}
var cases = []struct {
headRoot common.Hash
limit int
nodisk bool
expected int
expectBottom common.Hash
}{
{head, 0, false, 0, common.Hash{}},
{head, 64, false, 64, makeRoot(129 + 2 - 64)},
{head, 128, false, 128, makeRoot(3)}, // Normal diff layers, no accumulator
{head, 129, true, 129, makeRoot(2)}, // All diff layers, including accumulator
{head, 130, false, 130, makeRoot(1)}, // All diff layers + disk layer
}
for i, c := range cases {
layers := snaps.Snapshots(c.headRoot, c.limit, c.nodisk)
if len(layers) != c.expected {
t.Errorf("non-overflow test %d: returned snapshot layers are mismatched, want %v, got %v", i, c.expected, len(layers))
}
if len(layers) == 0 {
continue
}
bottommost := layers[len(layers)-1]
if bottommost.Root() != c.expectBottom {
t.Errorf("non-overflow test %d: snapshot mismatch, want %v, get %v", i, c.expectBottom, bottommost.Root())
}
}
// Above we've tested the normal capping, which leaves the accumulator live.
// Test that if the bottommost accumulator diff layer overflows the allowed
// memory limit, the snapshot tree gets capped to one less layer.
// Commit the diff layer onto the disk and ensure it's persisted
defer func(memcap uint64) { aggregatorMemoryLimit = memcap }(aggregatorMemoryLimit)
aggregatorMemoryLimit = 0
snaps.Cap(head, 128) // 129 (128 diffs + 1 overflown accumulator + 1 disk)
cases = []struct {
headRoot common.Hash
limit int
nodisk bool
expected int
expectBottom common.Hash
}{
{head, 0, false, 0, common.Hash{}},
{head, 64, false, 64, makeRoot(129 + 2 - 64)},
{head, 128, false, 128, makeRoot(3)}, // All diff layers, accumulator was flattened
{head, 129, true, 128, makeRoot(3)}, // All diff layers, accumulator was flattened
{head, 130, false, 129, makeRoot(2)}, // All diff layers + disk layer
}
for i, c := range cases {
layers := snaps.Snapshots(c.headRoot, c.limit, c.nodisk)
if len(layers) != c.expected {
t.Errorf("overflow test %d: returned snapshot layers are mismatched, want %v, got %v", i, c.expected, len(layers))
}
if len(layers) == 0 {
continue
}
bottommost := layers[len(layers)-1]
if bottommost.Root() != c.expectBottom {
t.Errorf("overflow test %d: snapshot mismatch, want %v, get %v", i, c.expectBottom, bottommost.Root())
}
}
}
// TestReadStateDuringFlattening tests the scenario that, during the
// bottom diff layers are merging which tags these as stale, the read
// happens via a pre-created top snapshot layer which tries to access
// the state in these stale layers. Ensure this read can retrieve the
// right state back(block until the flattening is finished) instead of
// an unexpected error(snapshot layer is stale).
func TestReadStateDuringFlattening(t *testing.T) {
// setAccount is a helper to construct a random account entry and assign it to
// an account slot in a snapshot
setAccount := func(accKey string) map[common.Hash][]byte {
return map[common.Hash][]byte{
common.HexToHash(accKey): randomAccount(),
}
}
// Create a starting base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// 4 layers in total, 3 diff layers and 1 disk layers
snaps.Update(common.HexToHash("0xa1"), common.HexToHash("0x01"), nil, setAccount("0xa1"), nil)
snaps.Update(common.HexToHash("0xa2"), common.HexToHash("0xa1"), nil, setAccount("0xa2"), nil)
snaps.Update(common.HexToHash("0xa3"), common.HexToHash("0xa2"), nil, setAccount("0xa3"), nil)
// Obtain the topmost snapshot handler for state accessing
snap := snaps.Snapshot(common.HexToHash("0xa3"))
// Register the testing hook to access the state after flattening
var result = make(chan *types.SlimAccount)
snaps.onFlatten = func() {
// Spin up a thread to read the account from the pre-created
// snapshot handler. It's expected to be blocked.
go func() {
account, _ := snap.Account(common.HexToHash("0xa1"))
result <- account
}()
select {
case res := <-result:
t.Fatalf("Unexpected return %v", res)
case <-time.NewTimer(time.Millisecond * 300).C:
}
}
// Cap the snap tree, which will mark the bottom-most layer as stale.
snaps.Cap(common.HexToHash("0xa3"), 1)
select {
case account := <-result:
if account == nil {
t.Fatal("Failed to retrieve account")
}
case <-time.NewTimer(time.Millisecond * 300).C:
t.Fatal("Unexpected blocker")
}
}