go-pulse/vendor/github.com/ethereum/ethash/src/libethash/internal.c
Péter Szilágyi 289b30715d Godeps, vendor: convert dependency management to trash (#3198)
This commit converts the dependency management from Godeps to the vendor
folder, also switching the tool from godep to trash. Since the upstream tool
lacks a few features proposed via a few PRs, until those PRs are merged in
(if), use github.com/karalabe/trash.

You can update dependencies via trash --update.

All dependencies have been updated to their latest version.

Parts of the build system are reworked to drop old notions of Godeps and
invocation of the go vet command so that it doesn't run against the vendor
folder, as that will just blow up during vetting.

The conversion drops OpenCL (and hence GPU mining support) from ethash and our
codebase. The short reasoning is that there's noone to maintain and having
opencl libs in our deps messes up builds as go install ./... tries to build
them, failing with unsatisfied link errors for the C OpenCL deps.

golang.org/x/net/context is not vendored in. We expect it to be fetched by the
user (i.e. using go get). To keep ci.go builds reproducible the package is
"vendored" in build/_vendor.
2016-10-28 19:05:01 +02:00

508 lines
13 KiB
C

/*
This file is part of ethash.
ethash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ethash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file internal.c
* @author Tim Hughes <tim@twistedfury.com>
* @author Matthew Wampler-Doty
* @date 2015
*/
#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include <errno.h>
#include <math.h>
#include "mmap.h"
#include "ethash.h"
#include "fnv.h"
#include "endian.h"
#include "internal.h"
#include "data_sizes.h"
#include "io.h"
#ifdef WITH_CRYPTOPP
#include "sha3_cryptopp.h"
#else
#include "sha3.h"
#endif // WITH_CRYPTOPP
uint64_t ethash_get_datasize(uint64_t const block_number)
{
assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
return dag_sizes[block_number / ETHASH_EPOCH_LENGTH];
}
uint64_t ethash_get_cachesize(uint64_t const block_number)
{
assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
return cache_sizes[block_number / ETHASH_EPOCH_LENGTH];
}
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
// SeqMemoHash(s, R, N)
bool static ethash_compute_cache_nodes(
node* const nodes,
uint64_t cache_size,
ethash_h256_t const* seed
)
{
if (cache_size % sizeof(node) != 0) {
return false;
}
uint32_t const num_nodes = (uint32_t) (cache_size / sizeof(node));
SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32);
for (uint32_t i = 1; i != num_nodes; ++i) {
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
}
for (uint32_t j = 0; j != ETHASH_CACHE_ROUNDS; j++) {
for (uint32_t i = 0; i != num_nodes; i++) {
uint32_t const idx = nodes[i].words[0] % num_nodes;
node data;
data = nodes[(num_nodes - 1 + i) % num_nodes];
for (uint32_t w = 0; w != NODE_WORDS; ++w) {
data.words[w] ^= nodes[idx].words[w];
}
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
}
}
// now perform endian conversion
fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS);
return true;
}
void ethash_calculate_dag_item(
node* const ret,
uint32_t node_index,
ethash_light_t const light
)
{
uint32_t num_parent_nodes = (uint32_t) (light->cache_size / sizeof(node));
node const* cache_nodes = (node const *) light->cache;
node const* init = &cache_nodes[node_index % num_parent_nodes];
memcpy(ret, init, sizeof(node));
ret->words[0] ^= node_index;
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
#if defined(_M_X64) && ENABLE_SSE
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = ret->xmm[0];
__m128i xmm1 = ret->xmm[1];
__m128i xmm2 = ret->xmm[2];
__m128i xmm3 = ret->xmm[3];
#endif
for (uint32_t i = 0; i != ETHASH_DATASET_PARENTS; ++i) {
uint32_t parent_index = fnv_hash(node_index ^ i, ret->words[i % NODE_WORDS]) % num_parent_nodes;
node const *parent = &cache_nodes[parent_index];
#if defined(_M_X64) && ENABLE_SSE
{
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);
// have to write to ret as values are used to compute index
ret->xmm[0] = xmm0;
ret->xmm[1] = xmm1;
ret->xmm[2] = xmm2;
ret->xmm[3] = xmm3;
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
}
}
#endif
}
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
}
bool ethash_compute_full_data(
void* mem,
uint64_t full_size,
ethash_light_t const light,
ethash_callback_t callback
)
{
if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
(full_size % sizeof(node)) != 0) {
return false;
}
uint32_t const max_n = (uint32_t)(full_size / sizeof(node));
node* full_nodes = mem;
double const progress_change = 1.0f / max_n;
double progress = 0.0f;
// now compute full nodes
for (uint32_t n = 0; n != max_n; ++n) {
if (callback &&
n % (max_n / 100) == 0 &&
callback((unsigned int)(ceil(progress * 100.0f))) != 0) {
return false;
}
progress += progress_change;
ethash_calculate_dag_item(&(full_nodes[n]), n, light);
}
return true;
}
static bool ethash_hash(
ethash_return_value_t* ret,
node const* full_nodes,
ethash_light_t const light,
uint64_t full_size,
ethash_h256_t const header_hash,
uint64_t const nonce
)
{
if (full_size % MIX_WORDS != 0) {
return false;
}
// pack hash and nonce together into first 40 bytes of s_mix
assert(sizeof(node) * 8 == 512);
node s_mix[MIX_NODES + 1];
memcpy(s_mix[0].bytes, &header_hash, 32);
fix_endian64(s_mix[0].double_words[4], nonce);
// compute sha3-512 hash and replicate across mix
SHA3_512(s_mix->bytes, s_mix->bytes, 40);
fix_endian_arr32(s_mix[0].words, 16);
node* const mix = s_mix + 1;
for (uint32_t w = 0; w != MIX_WORDS; ++w) {
mix->words[w] = s_mix[0].words[w % NODE_WORDS];
}
unsigned const page_size = sizeof(uint32_t) * MIX_WORDS;
unsigned const num_full_pages = (unsigned) (full_size / page_size);
for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) {
uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages;
for (unsigned n = 0; n != MIX_NODES; ++n) {
node const* dag_node;
if (full_nodes) {
dag_node = &full_nodes[MIX_NODES * index + n];
} else {
node tmp_node;
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light);
dag_node = &tmp_node;
}
#if defined(_M_X64) && ENABLE_SSE
{
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
}
}
#endif
}
}
// compress mix
for (uint32_t w = 0; w != MIX_WORDS; w += 4) {
uint32_t reduction = mix->words[w + 0];
reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
mix->words[w / 4] = reduction;
}
fix_endian_arr32(mix->words, MIX_WORDS / 4);
memcpy(&ret->mix_hash, mix->bytes, 32);
// final Keccak hash
SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
return true;
}
void ethash_quick_hash(
ethash_h256_t* return_hash,
ethash_h256_t const* header_hash,
uint64_t nonce,
ethash_h256_t const* mix_hash
)
{
uint8_t buf[64 + 32];
memcpy(buf, header_hash, 32);
fix_endian64_same(nonce);
memcpy(&(buf[32]), &nonce, 8);
SHA3_512(buf, buf, 40);
memcpy(&(buf[64]), mix_hash, 32);
SHA3_256(return_hash, buf, 64 + 32);
}
ethash_h256_t ethash_get_seedhash(uint64_t block_number)
{
ethash_h256_t ret;
ethash_h256_reset(&ret);
uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH;
for (uint32_t i = 0; i < epochs; ++i)
SHA3_256(&ret, (uint8_t*)&ret, 32);
return ret;
}
bool ethash_quick_check_difficulty(
ethash_h256_t const* header_hash,
uint64_t const nonce,
ethash_h256_t const* mix_hash,
ethash_h256_t const* boundary
)
{
ethash_h256_t return_hash;
ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash);
return ethash_check_difficulty(&return_hash, boundary);
}
ethash_light_t ethash_light_new_internal(uint64_t cache_size, ethash_h256_t const* seed)
{
struct ethash_light *ret;
ret = calloc(sizeof(*ret), 1);
if (!ret) {
return NULL;
}
ret->cache = malloc((size_t)cache_size);
if (!ret->cache) {
goto fail_free_light;
}
node* nodes = (node*)ret->cache;
if (!ethash_compute_cache_nodes(nodes, cache_size, seed)) {
goto fail_free_cache_mem;
}
ret->cache_size = cache_size;
return ret;
fail_free_cache_mem:
free(ret->cache);
fail_free_light:
free(ret);
return NULL;
}
ethash_light_t ethash_light_new(uint64_t block_number)
{
ethash_h256_t seedhash = ethash_get_seedhash(block_number);
ethash_light_t ret;
ret = ethash_light_new_internal(ethash_get_cachesize(block_number), &seedhash);
ret->block_number = block_number;
return ret;
}
void ethash_light_delete(ethash_light_t light)
{
if (light->cache) {
free(light->cache);
}
free(light);
}
ethash_return_value_t ethash_light_compute_internal(
ethash_light_t light,
uint64_t full_size,
ethash_h256_t const header_hash,
uint64_t nonce
)
{
ethash_return_value_t ret;
ret.success = true;
if (!ethash_hash(&ret, NULL, light, full_size, header_hash, nonce)) {
ret.success = false;
}
return ret;
}
ethash_return_value_t ethash_light_compute(
ethash_light_t light,
ethash_h256_t const header_hash,
uint64_t nonce
)
{
uint64_t full_size = ethash_get_datasize(light->block_number);
return ethash_light_compute_internal(light, full_size, header_hash, nonce);
}
static bool ethash_mmap(struct ethash_full* ret, FILE* f)
{
int fd;
char* mmapped_data;
errno = 0;
ret->file = f;
if ((fd = ethash_fileno(ret->file)) == -1) {
return false;
}
mmapped_data= mmap(
NULL,
(size_t)ret->file_size + ETHASH_DAG_MAGIC_NUM_SIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fd,
0
);
if (mmapped_data == MAP_FAILED) {
return false;
}
ret->data = (node*)(mmapped_data + ETHASH_DAG_MAGIC_NUM_SIZE);
return true;
}
ethash_full_t ethash_full_new_internal(
char const* dirname,
ethash_h256_t const seed_hash,
uint64_t full_size,
ethash_light_t const light,
ethash_callback_t callback
)
{
struct ethash_full* ret;
FILE *f = NULL;
ret = calloc(sizeof(*ret), 1);
if (!ret) {
return NULL;
}
ret->file_size = (size_t)full_size;
switch (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, false)) {
case ETHASH_IO_FAIL:
// ethash_io_prepare will do all ETHASH_CRITICAL() logging in fail case
goto fail_free_full;
case ETHASH_IO_MEMO_MATCH:
if (!ethash_mmap(ret, f)) {
ETHASH_CRITICAL("mmap failure()");
goto fail_close_file;
}
return ret;
case ETHASH_IO_MEMO_SIZE_MISMATCH:
// if a DAG of same filename but unexpected size is found, silently force new file creation
if (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, true) != ETHASH_IO_MEMO_MISMATCH) {
ETHASH_CRITICAL("Could not recreate DAG file after finding existing DAG with unexpected size.");
goto fail_free_full;
}
// fallthrough to the mismatch case here, DO NOT go through match
case ETHASH_IO_MEMO_MISMATCH:
if (!ethash_mmap(ret, f)) {
ETHASH_CRITICAL("mmap failure()");
goto fail_close_file;
}
break;
}
if (!ethash_compute_full_data(ret->data, full_size, light, callback)) {
ETHASH_CRITICAL("Failure at computing DAG data.");
goto fail_free_full_data;
}
// after the DAG has been filled then we finalize it by writting the magic number at the beginning
if (fseek(f, 0, SEEK_SET) != 0) {
ETHASH_CRITICAL("Could not seek to DAG file start to write magic number.");
goto fail_free_full_data;
}
uint64_t const magic_num = ETHASH_DAG_MAGIC_NUM;
if (fwrite(&magic_num, ETHASH_DAG_MAGIC_NUM_SIZE, 1, f) != 1) {
ETHASH_CRITICAL("Could not write magic number to DAG's beginning.");
goto fail_free_full_data;
}
if (fflush(f) != 0) {// make sure the magic number IS there
ETHASH_CRITICAL("Could not flush memory mapped data to DAG file. Insufficient space?");
goto fail_free_full_data;
}
return ret;
fail_free_full_data:
// could check that munmap(..) == 0 but even if it did not can't really do anything here
munmap(ret->data, (size_t)full_size);
fail_close_file:
fclose(ret->file);
fail_free_full:
free(ret);
return NULL;
}
ethash_full_t ethash_full_new(ethash_light_t light, ethash_callback_t callback)
{
char strbuf[256];
if (!ethash_get_default_dirname(strbuf, 256)) {
return NULL;
}
uint64_t full_size = ethash_get_datasize(light->block_number);
ethash_h256_t seedhash = ethash_get_seedhash(light->block_number);
return ethash_full_new_internal(strbuf, seedhash, full_size, light, callback);
}
void ethash_full_delete(ethash_full_t full)
{
// could check that munmap(..) == 0 but even if it did not can't really do anything here
munmap(full->data, (size_t)full->file_size);
if (full->file) {
fclose(full->file);
}
free(full);
}
ethash_return_value_t ethash_full_compute(
ethash_full_t full,
ethash_h256_t const header_hash,
uint64_t nonce
)
{
ethash_return_value_t ret;
ret.success = true;
if (!ethash_hash(
&ret,
(node const*)full->data,
NULL,
full->file_size,
header_hash,
nonce)) {
ret.success = false;
}
return ret;
}
void const* ethash_full_dag(ethash_full_t full)
{
return full->data;
}
uint64_t ethash_full_dag_size(ethash_full_t full)
{
return full->file_size;
}