go-pulse/swarm/pss/prox_test.go

468 lines
15 KiB
Go

package pss
import (
"context"
"crypto/ecdsa"
"encoding/binary"
"fmt"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/ethereum/go-ethereum/rpc"
"github.com/ethereum/go-ethereum/swarm/network"
"github.com/ethereum/go-ethereum/swarm/network/simulation"
"github.com/ethereum/go-ethereum/swarm/pot"
"github.com/ethereum/go-ethereum/swarm/state"
)
// needed to make the enode id of the receiving node available to the handler for triggers
type handlerContextFunc func(*testData, *adapters.NodeConfig) *handler
// struct to notify reception of messages to simulation driver
// TODO To make code cleaner:
// - consider a separate pss unwrap to message event in sim framework (this will make eventual message propagation analysis with pss easier/possible in the future)
// - consider also test api calls to inspect handling results of messages
type handlerNotification struct {
id enode.ID
serial uint64
}
type testData struct {
sim *simulation.Simulation
kademlias map[enode.ID]*network.Kademlia
nodeAddresses map[enode.ID][]byte // make predictable overlay addresses from the generated random enode ids
senders map[int]enode.ID // originating nodes of the messages (intention is to choose as far as possible from the receiving neighborhood)
recipientAddresses [][]byte
requiredMsgCount int
requiredMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
allowedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
notifications []handlerNotification // notification queue
totalMsgCount int
handlerDone bool // set to true on termination of the simulation run
mu sync.Mutex
}
var (
pof = pot.DefaultPof(256) // generate messages and index them
topic = BytesToTopic([]byte{0xf3, 0x9e, 0x06, 0x82})
)
func (td *testData) pushNotification(val handlerNotification) {
td.mu.Lock()
td.notifications = append(td.notifications, val)
td.mu.Unlock()
}
func (td *testData) popNotification() (first handlerNotification, exist bool) {
td.mu.Lock()
if len(td.notifications) > 0 {
exist = true
first = td.notifications[0]
td.notifications = td.notifications[1:]
}
td.mu.Unlock()
return first, exist
}
func (td *testData) getMsgCount() int {
td.mu.Lock()
defer td.mu.Unlock()
return td.totalMsgCount
}
func (td *testData) incrementMsgCount() int {
td.mu.Lock()
defer td.mu.Unlock()
td.totalMsgCount++
return td.totalMsgCount
}
func (td *testData) isDone() bool {
td.mu.Lock()
defer td.mu.Unlock()
return td.handlerDone
}
func (td *testData) setDone() {
td.mu.Lock()
defer td.mu.Unlock()
td.handlerDone = true
}
func newTestData() *testData {
return &testData{
kademlias: make(map[enode.ID]*network.Kademlia),
nodeAddresses: make(map[enode.ID][]byte),
requiredMsgs: make(map[enode.ID][]uint64),
allowedMsgs: make(map[enode.ID][]uint64),
senders: make(map[int]enode.ID),
}
}
func (td *testData) getKademlia(nodeId *enode.ID) (*network.Kademlia, error) {
kadif, ok := td.sim.NodeItem(*nodeId, simulation.BucketKeyKademlia)
if !ok {
return nil, fmt.Errorf("no kademlia entry for %v", nodeId)
}
kad, ok := kadif.(*network.Kademlia)
if !ok {
return nil, fmt.Errorf("invalid kademlia entry for %v", nodeId)
}
return kad, nil
}
func (td *testData) init(msgCount int) error {
log.Debug("TestProxNetwork start")
for _, nodeId := range td.sim.NodeIDs() {
kad, err := td.getKademlia(&nodeId)
if err != nil {
return err
}
td.nodeAddresses[nodeId] = kad.BaseAddr()
}
for i := 0; i < int(msgCount); i++ {
msgAddr := pot.RandomAddress() // we choose message addresses randomly
td.recipientAddresses = append(td.recipientAddresses, msgAddr.Bytes())
smallestPo := 256
var targets []enode.ID
var closestPO int
// loop through all nodes and find the required and allowed recipients of each message
// (for more information, please see the comment to the main test function)
for _, nod := range td.sim.Net.GetNodes() {
po, _ := pof(td.recipientAddresses[i], td.nodeAddresses[nod.ID()], 0)
depth := td.kademlias[nod.ID()].NeighbourhoodDepth()
// only nodes with closest IDs (wrt the msg address) will be required recipients
if po > closestPO {
closestPO = po
targets = nil
targets = append(targets, nod.ID())
} else if po == closestPO {
targets = append(targets, nod.ID())
}
if po >= depth {
td.allowedMsgs[nod.ID()] = append(td.allowedMsgs[nod.ID()], uint64(i))
}
// a node with the smallest PO (wrt msg) will be the sender,
// in order to increase the distance the msg must travel
if po < smallestPo {
smallestPo = po
td.senders[i] = nod.ID()
}
}
td.requiredMsgCount += len(targets)
for _, id := range targets {
td.requiredMsgs[id] = append(td.requiredMsgs[id], uint64(i))
}
log.Debug("nn for msg", "targets", len(targets), "msgidx", i, "msg", common.Bytes2Hex(msgAddr[:8]), "sender", td.senders[i], "senderpo", smallestPo)
}
log.Debug("recipientAddresses to receive", "count", td.requiredMsgCount)
return nil
}
// Here we test specific functionality of the pss, setting the prox property of
// the handler. The tests generate a number of messages with random addresses.
// Then, for each message it calculates which nodes have the msg address
// within its nearest neighborhood depth, and stores those nodes as possible
// recipients. Those nodes that are the closest to the message address (nodes
// belonging to the deepest PO wrt the msg address) are stored as required
// recipients. The difference between allowed and required recipients results
// from the fact that the nearest neighbours are not necessarily reciprocal.
// Upon sending the messages, the test verifies that the respective message is
// passed to the message handlers of these required recipients. The test fails
// if a message is handled by recipient which is not listed among the allowed
// recipients of this particular message. It also fails after timeout, if not
// all the required recipients have received their respective messages.
//
// For example, if proximity order of certain msg address is 4, and node X
// has PO=5 wrt the message address, and nodes Y and Z have PO=6, then:
// nodes Y and Z will be considered required recipients of the msg,
// whereas nodes X, Y and Z will be allowed recipients.
func TestProxNetwork(t *testing.T) {
t.Run("16_nodes,_16_messages,_16_seconds", func(t *testing.T) {
testProxNetwork(t, 16, 16, 16*time.Second)
})
}
func TestProxNetworkLong(t *testing.T) {
if !*longrunning {
t.Skip("run with --longrunning flag to run extensive network tests")
}
t.Run("8_nodes,_100_messages,_30_seconds", func(t *testing.T) {
testProxNetwork(t, 8, 100, 30*time.Second)
})
t.Run("16_nodes,_100_messages,_30_seconds", func(t *testing.T) {
testProxNetwork(t, 16, 100, 30*time.Second)
})
t.Run("32_nodes,_100_messages,_60_seconds", func(t *testing.T) {
testProxNetwork(t, 32, 100, 1*time.Minute)
})
t.Run("64_nodes,_100_messages,_60_seconds", func(t *testing.T) {
testProxNetwork(t, 64, 100, 1*time.Minute)
})
t.Run("128_nodes,_100_messages,_120_seconds", func(t *testing.T) {
testProxNetwork(t, 128, 100, 2*time.Minute)
})
}
func testProxNetwork(t *testing.T, nodeCount int, msgCount int, timeout time.Duration) {
td := newTestData()
handlerContextFuncs := make(map[Topic]handlerContextFunc)
handlerContextFuncs[topic] = nodeMsgHandler
services := newProxServices(td, true, handlerContextFuncs, td.kademlias)
td.sim = simulation.New(services)
defer td.sim.Close()
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
filename := fmt.Sprintf("testdata/snapshot_%d.json", nodeCount)
err := td.sim.UploadSnapshot(ctx, filename)
if err != nil {
t.Fatal(err)
}
err = td.init(msgCount) // initialize the test data
if err != nil {
t.Fatal(err)
}
wrapper := func(c context.Context, _ *simulation.Simulation) error {
return testRoutine(td, c)
}
result := td.sim.Run(ctx, wrapper) // call the main test function
if result.Error != nil {
timedOut := result.Error == context.DeadlineExceeded
if !timedOut || td.getMsgCount() < td.requiredMsgCount {
t.Fatal(result.Error)
}
}
}
func (td *testData) sendAllMsgs() error {
nodes := make(map[int]*rpc.Client)
for i := range td.recipientAddresses {
nodeClient, err := td.sim.Net.GetNode(td.senders[i]).Client()
if err != nil {
return err
}
nodes[i] = nodeClient
}
for i, msg := range td.recipientAddresses {
log.Debug("sending msg", "idx", i, "from", td.senders[i])
nodeClient := nodes[i]
var uvarByte [8]byte
binary.PutUvarint(uvarByte[:], uint64(i))
nodeClient.Call(nil, "pss_sendRaw", hexutil.Encode(msg), hexutil.Encode(topic[:]), hexutil.Encode(uvarByte[:]))
}
return nil
}
func isMoreTimeLeft(ctx context.Context) bool {
select {
case <-ctx.Done():
return false
default:
return true
}
}
// testRoutine is the main test function, called by Simulation.Run()
func testRoutine(td *testData, ctx context.Context) error {
hasMoreRound := func(err error, hadMessage bool) bool {
return err == nil && (hadMessage || isMoreTimeLeft(ctx))
}
if err := td.sendAllMsgs(); err != nil {
return err
}
var err error
received := 0
hadMessage := false
for oneMoreRound := true; oneMoreRound; oneMoreRound = hasMoreRound(err, hadMessage) {
message, hadMessage := td.popNotification()
if !isMoreTimeLeft(ctx) {
// Stop handlers from sending more messages.
// Note: only best effort, race is possible.
td.setDone()
}
if hadMessage {
if td.isAllowedMessage(message) {
received++
log.Debug("msg received", "msgs_received", received, "total_expected", td.requiredMsgCount, "id", message.id, "serial", message.serial)
} else {
err = fmt.Errorf("message %d received by wrong recipient %v", message.serial, message.id)
}
} else {
time.Sleep(32 * time.Millisecond)
}
}
if err != nil {
return err
}
if td.getMsgCount() < td.requiredMsgCount {
return ctx.Err()
}
return nil
}
func (td *testData) isAllowedMessage(n handlerNotification) bool {
// check if message serial is in expected messages for this recipient
for _, s := range td.allowedMsgs[n.id] {
if n.serial == s {
return true
}
}
return false
}
func (td *testData) removeAllowedMessage(id enode.ID, index int) {
last := len(td.allowedMsgs[id]) - 1
td.allowedMsgs[id][index] = td.allowedMsgs[id][last]
td.allowedMsgs[id] = td.allowedMsgs[id][:last]
}
func nodeMsgHandler(td *testData, config *adapters.NodeConfig) *handler {
return &handler{
f: func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
if td.isDone() {
return nil // terminate if simulation is over
}
td.incrementMsgCount()
// using simple serial in message body, makes it easy to keep track of who's getting what
serial, c := binary.Uvarint(msg)
if c <= 0 {
log.Crit(fmt.Sprintf("corrupt message received by %x (uvarint parse returned %d)", config.ID, c))
}
td.pushNotification(handlerNotification{id: config.ID, serial: serial})
return nil
},
caps: &handlerCaps{
raw: true, // we use raw messages for simplicity
prox: true,
},
}
}
// an adaptation of the same services setup as in pss_test.go
// replaces pss_test.go when those tests are rewritten to the new swarm/network/simulation package
func newProxServices(td *testData, allowRaw bool, handlerContextFuncs map[Topic]handlerContextFunc, kademlias map[enode.ID]*network.Kademlia) map[string]simulation.ServiceFunc {
stateStore := state.NewInmemoryStore()
kademlia := func(id enode.ID, bzzkey []byte) *network.Kademlia {
if k, ok := kademlias[id]; ok {
return k
}
params := network.NewKadParams()
params.MaxBinSize = 3
params.MinBinSize = 1
params.MaxRetries = 1000
params.RetryExponent = 2
params.RetryInterval = 1000000
kademlias[id] = network.NewKademlia(bzzkey, params)
return kademlias[id]
}
return map[string]simulation.ServiceFunc{
"bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
var err error
var bzzPrivateKey *ecdsa.PrivateKey
// normally translation of enode id to swarm address is concealed by the network package
// however, we need to keep track of it in the test driver as well.
// if the translation in the network package changes, that can cause these tests to unpredictably fail
// therefore we keep a local copy of the translation here
addr := network.NewAddr(ctx.Config.Node())
bzzPrivateKey, err = simulation.BzzPrivateKeyFromConfig(ctx.Config)
if err != nil {
return nil, nil, err
}
addr.OAddr = network.PrivateKeyToBzzKey(bzzPrivateKey)
b.Store(simulation.BucketKeyBzzPrivateKey, bzzPrivateKey)
hp := network.NewHiveParams()
hp.Discovery = false
config := &network.BzzConfig{
OverlayAddr: addr.Over(),
UnderlayAddr: addr.Under(),
HiveParams: hp,
}
bzzKey := network.PrivateKeyToBzzKey(bzzPrivateKey)
pskad := kademlia(ctx.Config.ID, bzzKey)
b.Store(simulation.BucketKeyKademlia, pskad)
return network.NewBzz(config, kademlia(ctx.Config.ID, addr.OAddr), stateStore, nil, nil), nil, nil
},
"pss": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
// execadapter does not exec init()
initTest()
// create keys in whisper and set up the pss object
ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second*3)
defer cancel()
keys, err := wapi.NewKeyPair(ctxlocal)
privkey, err := w.GetPrivateKey(keys)
pssp := NewPssParams().WithPrivateKey(privkey)
pssp.AllowRaw = allowRaw
bzzPrivateKey, err := simulation.BzzPrivateKeyFromConfig(ctx.Config)
if err != nil {
return nil, nil, err
}
bzzKey := network.PrivateKeyToBzzKey(bzzPrivateKey)
pskad := kademlia(ctx.Config.ID, bzzKey)
b.Store(simulation.BucketKeyKademlia, pskad)
ps, err := NewPss(pskad, pssp)
if err != nil {
return nil, nil, err
}
// register the handlers we've been passed
var deregisters []func()
for tpc, hndlrFunc := range handlerContextFuncs {
deregisters = append(deregisters, ps.Register(&tpc, hndlrFunc(td, ctx.Config)))
}
// if handshake mode is set, add the controller
// TODO: This should be hooked to the handshake test file
if useHandshake {
SetHandshakeController(ps, NewHandshakeParams())
}
// we expose some api calls for cheating
ps.addAPI(rpc.API{
Namespace: "psstest",
Version: "0.3",
Service: NewAPITest(ps),
Public: false,
})
// return Pss and cleanups
return ps, func() {
// run the handler deregister functions in reverse order
for i := len(deregisters); i > 0; i-- {
deregisters[i-1]()
}
}, nil
},
}
}