mirror of
https://gitlab.com/pulsechaincom/go-pulse.git
synced 2025-01-05 10:12:19 +00:00
7088f1e814
* eth/protocols: persist received state segments * core: initial implementation * core/state/snapshot: add tests * core, eth: updates * eth/protocols/snapshot: count flat state size * core/state: add metrics * core/state/snapshot: skip unnecessary deletion * core/state/snapshot: rename * core/state/snapshot: use the global batch * core/state/snapshot: add logs and fix wiping * core/state/snapshot: fix * core/state/snapshot: save generation progress even if the batch is empty * core/state/snapshot: fixes * core/state/snapshot: fix initial account range length * core/state/snapshot: fix initial account range * eth/protocols/snap: store flat states during the healing * eth/protocols/snap: print logs * core/state/snapshot: refactor (#4) * core/state/snapshot: refactor * core/state/snapshot: tiny fix and polish Co-authored-by: rjl493456442 <garyrong0905@gmail.com> * core, eth: fixes * core, eth: fix healing writer * core, trie, eth: fix paths * eth/protocols/snap: fix encoding * eth, core: add debug log * core/state/generate: release iterator asap (#5) core/state/snapshot: less copy core/state/snapshot: revert split loop core/state/snapshot: handle storage becoming empty, improve test robustness core/state: test modified codehash core/state/snapshot: polish * core/state/snapshot: optimize stats counter * core, eth: add metric * core/state/snapshot: update comments * core/state/snapshot: improve tests * core/state/snapshot: replace secure trie with standard trie * core/state/snapshot: wrap return as the struct * core/state/snapshot: skip wiping correct states * core/state/snapshot: updates * core/state/snapshot: fixes * core/state/snapshot: fix panic due to reference flaw in closure * core/state/snapshot: fix errors in state generation logic + fix log output * core/state/snapshot: remove an error case * core/state/snapshot: fix condition-check for exhausted snap state * core/state/snapshot: use stackTrie for small tries * core/state/snapshot: don't resolve small storage tries in vain * core/state/snapshot: properly clean up storage of deleted accounts * core/state/snapshot: avoid RLP-encoding in some cases + minor nitpicks * core/state/snapshot: fix error (+testcase) * core/state/snapshot: clean up tests a bit * core/state/snapshot: work in progress on better tests * core/state/snapshot: polish code * core/state/snapshot: fix trie iteration abortion trigger * core/state/snapshot: fixes flaws * core/state/snapshot: remove panic * core/state/snapshot: fix abort * core/state/snapshot: more tests (plus failing testcase) * core/state/snapshot: more testcases + fix for failing test * core/state/snapshot: testcase for malformed data * core/state/snapshot: some test nitpicks * core/state/snapshot: improvements to logging * core/state/snapshot: testcase to demo error in abortion * core/state/snapshot: fix abortion * cmd/geth: make verify-state report the root * trie: fix failing test * core/state/snapshot: add timer metrics * core/state/snapshot: fix metrics * core/state/snapshot: udpate tests * eth/protocols/snap: write snapshot account even if code or state is needed * core/state/snapshot: fix diskmore check * core/state/snapshot: review fixes * core/state/snapshot: improve error message * cmd/geth: rename 'error' to 'err' in logs * core/state/snapshot: fix some review concerns * core/state/snapshot, eth/protocols/snap: clear snapshot marker when starting/resuming snap sync * core: add error log * core/state/snapshot: use proper timers for metrics collection * core/state/snapshot: address some review concerns * eth/protocols/snap: improved log message * eth/protocols/snap: fix heal logs to condense infos * core/state/snapshot: wait for generator termination before restarting * core/state/snapshot: revert timers to counters to track total time Co-authored-by: Martin Holst Swende <martin@swende.se> Co-authored-by: Péter Szilágyi <peterke@gmail.com>
272 lines
7.8 KiB
Go
272 lines
7.8 KiB
Go
// Copyright 2019 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"sync"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
|
|
// some parallelism but not incur too much memory overhead.
|
|
const leafChanSize = 200
|
|
|
|
// leaf represents a trie leaf value
|
|
type leaf struct {
|
|
size int // size of the rlp data (estimate)
|
|
hash common.Hash // hash of rlp data
|
|
node node // the node to commit
|
|
}
|
|
|
|
// committer is a type used for the trie Commit operation. A committer has some
|
|
// internal preallocated temp space, and also a callback that is invoked when
|
|
// leaves are committed. The leafs are passed through the `leafCh`, to allow
|
|
// some level of parallelism.
|
|
// By 'some level' of parallelism, it's still the case that all leaves will be
|
|
// processed sequentially - onleaf will never be called in parallel or out of order.
|
|
type committer struct {
|
|
tmp sliceBuffer
|
|
sha crypto.KeccakState
|
|
|
|
onleaf LeafCallback
|
|
leafCh chan *leaf
|
|
}
|
|
|
|
// committers live in a global sync.Pool
|
|
var committerPool = sync.Pool{
|
|
New: func() interface{} {
|
|
return &committer{
|
|
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
|
|
sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
|
|
}
|
|
},
|
|
}
|
|
|
|
// newCommitter creates a new committer or picks one from the pool.
|
|
func newCommitter() *committer {
|
|
return committerPool.Get().(*committer)
|
|
}
|
|
|
|
func returnCommitterToPool(h *committer) {
|
|
h.onleaf = nil
|
|
h.leafCh = nil
|
|
committerPool.Put(h)
|
|
}
|
|
|
|
// commit collapses a node down into a hash node and inserts it into the database
|
|
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
|
|
if db == nil {
|
|
return nil, errors.New("no db provided")
|
|
}
|
|
h, err := c.commit(n, db)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return h.(hashNode), nil
|
|
}
|
|
|
|
// commit collapses a node down into a hash node and inserts it into the database
|
|
func (c *committer) commit(n node, db *Database) (node, error) {
|
|
// if this path is clean, use available cached data
|
|
hash, dirty := n.cache()
|
|
if hash != nil && !dirty {
|
|
return hash, nil
|
|
}
|
|
// Commit children, then parent, and remove remove the dirty flag.
|
|
switch cn := n.(type) {
|
|
case *shortNode:
|
|
// Commit child
|
|
collapsed := cn.copy()
|
|
|
|
// If the child is fullnode, recursively commit.
|
|
// Otherwise it can only be hashNode or valueNode.
|
|
if _, ok := cn.Val.(*fullNode); ok {
|
|
childV, err := c.commit(cn.Val, db)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
collapsed.Val = childV
|
|
}
|
|
// The key needs to be copied, since we're delivering it to database
|
|
collapsed.Key = hexToCompact(cn.Key)
|
|
hashedNode := c.store(collapsed, db)
|
|
if hn, ok := hashedNode.(hashNode); ok {
|
|
return hn, nil
|
|
}
|
|
return collapsed, nil
|
|
case *fullNode:
|
|
hashedKids, err := c.commitChildren(cn, db)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
collapsed := cn.copy()
|
|
collapsed.Children = hashedKids
|
|
|
|
hashedNode := c.store(collapsed, db)
|
|
if hn, ok := hashedNode.(hashNode); ok {
|
|
return hn, nil
|
|
}
|
|
return collapsed, nil
|
|
case hashNode:
|
|
return cn, nil
|
|
default:
|
|
// nil, valuenode shouldn't be committed
|
|
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
|
|
}
|
|
}
|
|
|
|
// commitChildren commits the children of the given fullnode
|
|
func (c *committer) commitChildren(n *fullNode, db *Database) ([17]node, error) {
|
|
var children [17]node
|
|
for i := 0; i < 16; i++ {
|
|
child := n.Children[i]
|
|
if child == nil {
|
|
continue
|
|
}
|
|
// If it's the hashed child, save the hash value directly.
|
|
// Note: it's impossible that the child in range [0, 15]
|
|
// is a valuenode.
|
|
if hn, ok := child.(hashNode); ok {
|
|
children[i] = hn
|
|
continue
|
|
}
|
|
// Commit the child recursively and store the "hashed" value.
|
|
// Note the returned node can be some embedded nodes, so it's
|
|
// possible the type is not hashnode.
|
|
hashed, err := c.commit(child, db)
|
|
if err != nil {
|
|
return children, err
|
|
}
|
|
children[i] = hashed
|
|
}
|
|
// For the 17th child, it's possible the type is valuenode.
|
|
if n.Children[16] != nil {
|
|
children[16] = n.Children[16]
|
|
}
|
|
return children, nil
|
|
}
|
|
|
|
// store hashes the node n and if we have a storage layer specified, it writes
|
|
// the key/value pair to it and tracks any node->child references as well as any
|
|
// node->external trie references.
|
|
func (c *committer) store(n node, db *Database) node {
|
|
// Larger nodes are replaced by their hash and stored in the database.
|
|
var (
|
|
hash, _ = n.cache()
|
|
size int
|
|
)
|
|
if hash == nil {
|
|
// This was not generated - must be a small node stored in the parent.
|
|
// In theory we should apply the leafCall here if it's not nil(embedded
|
|
// node usually contains value). But small value(less than 32bytes) is
|
|
// not our target.
|
|
return n
|
|
} else {
|
|
// We have the hash already, estimate the RLP encoding-size of the node.
|
|
// The size is used for mem tracking, does not need to be exact
|
|
size = estimateSize(n)
|
|
}
|
|
// If we're using channel-based leaf-reporting, send to channel.
|
|
// The leaf channel will be active only when there an active leaf-callback
|
|
if c.leafCh != nil {
|
|
c.leafCh <- &leaf{
|
|
size: size,
|
|
hash: common.BytesToHash(hash),
|
|
node: n,
|
|
}
|
|
} else if db != nil {
|
|
// No leaf-callback used, but there's still a database. Do serial
|
|
// insertion
|
|
db.lock.Lock()
|
|
db.insert(common.BytesToHash(hash), size, n)
|
|
db.lock.Unlock()
|
|
}
|
|
return hash
|
|
}
|
|
|
|
// commitLoop does the actual insert + leaf callback for nodes.
|
|
func (c *committer) commitLoop(db *Database) {
|
|
for item := range c.leafCh {
|
|
var (
|
|
hash = item.hash
|
|
size = item.size
|
|
n = item.node
|
|
)
|
|
// We are pooling the trie nodes into an intermediate memory cache
|
|
db.lock.Lock()
|
|
db.insert(hash, size, n)
|
|
db.lock.Unlock()
|
|
|
|
if c.onleaf != nil {
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
if child, ok := n.Val.(valueNode); ok {
|
|
c.onleaf(nil, nil, child, hash)
|
|
}
|
|
case *fullNode:
|
|
// For children in range [0, 15], it's impossible
|
|
// to contain valuenode. Only check the 17th child.
|
|
if n.Children[16] != nil {
|
|
c.onleaf(nil, nil, n.Children[16].(valueNode), hash)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *committer) makeHashNode(data []byte) hashNode {
|
|
n := make(hashNode, c.sha.Size())
|
|
c.sha.Reset()
|
|
c.sha.Write(data)
|
|
c.sha.Read(n)
|
|
return n
|
|
}
|
|
|
|
// estimateSize estimates the size of an rlp-encoded node, without actually
|
|
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
|
|
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
|
|
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
|
|
func estimateSize(n node) int {
|
|
switch n := n.(type) {
|
|
case *shortNode:
|
|
// A short node contains a compacted key, and a value.
|
|
return 3 + len(n.Key) + estimateSize(n.Val)
|
|
case *fullNode:
|
|
// A full node contains up to 16 hashes (some nils), and a key
|
|
s := 3
|
|
for i := 0; i < 16; i++ {
|
|
if child := n.Children[i]; child != nil {
|
|
s += estimateSize(child)
|
|
} else {
|
|
s++
|
|
}
|
|
}
|
|
return s
|
|
case valueNode:
|
|
return 1 + len(n)
|
|
case hashNode:
|
|
return 1 + len(n)
|
|
default:
|
|
panic(fmt.Sprintf("node type %T", n))
|
|
}
|
|
}
|